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return (NULL) ;
}
idx = HASH(fp);
pthread mutex_lock (&hashlock) ;
fp->f next = fhlidx];
fhlidx] = f£p->f next;
pthread_mutex_lock(&fp—>f_lock);
pthread_mutex_unlock(&hashlock);
/* ... continue initialization ... */

return (fp) ;

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{

pthread_mutex_lock(&hashlock);

fp->f_count++;

pthread_mutex_unlock(&hashlock);

}

struct foo *
foo_find(int id) /* find a existing object */

{
struct foo *fp;
int idx;
idx = HASH(fp):
‘pthread_mutex_lock(&hashlock);
for (fp = fhlidx]; fp != NULL; fp = fp->f next) {
if (fp->f_id == id) {
fp->f_count++;
break;
}
}
pthread_mutex_unlock(&hashlock);
return (fp) ;
}
void
foo_rele(struct foo *fp) /* release a reference to the object */
{

struct foo *tfp;
int idx;

pthread_mutex_lock(&hashlock);
if (--fp->f_count == 0) { /* last reference, remove from list */
idx = HASH(fp);
tfp = fhlidx];
if (tfp == fp) {
fhiidx] = fp->f_next;
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} else {
while (tfp->f next != fp)
tfp = tfp->f next;
tfp->f next = fp->f next;
}
pthread mutex unlock (&hashlock) ;
pthread mutex_destroy(&fp->f lock) ;
free(fp);
} else {
pthread mutex_unlock (&hashlock) ;
}

Figure 11.12 Simplified locking

Note how much simpler the program in Figure 11.12 is compared to the program in
Figure 11.11. The lock-ordering issues surrounding the hash list and the reference count
go away when we use the same lock for both purposes. Multithreaded software design
involves these types of tradeoffs. If your locking granularity is too coarse, you end up
with too many threads blocking behind the same locks, with little improvement
possible from concurrency. If your locking granularity is too fine, then you suffer bad
performance from excess locking overhead, and you end up with complex code. As a
programmer, you need to find the correct balance between code complexity and
performance, and still satisfy your locking requirements. o

Reader—Writer Locks

Reader-writer locks are similar to mutexes, except that they allow for higher degrees of
parallelism. With a mutex, the state is either locked or unlocked, and only one thread
can lock it at a time. Three states are possible with a reader-writer lock: locked in read
mode, locked in write mode, and unlocked. Only one thread at a time can hold a
reader-writer lock in write mode, but multiple threads can hold a reader-writer lock in
read mode at the same time.

When a reader-writer lock is write-locked, all threads attempting to lock it block
until it is unlocked. When a reader-writér lock is read-locked, all threads attempting to
lock it in read mode are given access, but any threads attempting to lock it in write
mode block until all the threads have relinquished their read locks. Although
implementations vary, reader-writer locks usually block additional readers if a lock is
already held in read mode and a thread is blocked trying to acquire the lock in write
mode. This prevents a constant stream of readers from starving waiting writers.

Reader-writer locks are well suited for situations in which data structures are read
more often than they are modified. When a reader-writer lock is held in write mode,
the data structure it protects can be modified safely, since only one thread at a time can
hold the lock in write mode. When the reader—writer lock is held in read mode, the
data structure it protects can be read by multiple threads, as long as the threads first
acquire the lock in read mode.
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Reader—writer locks are also called shared-exclusive locks. When a reader-writer
lock is read-locked, it is said to be locked in shared mode. When it is write-locked, it is
said to be locked in exclusive mode. :

As with mutexes, reader-writer locks must be initialized before use and destroyed
before freeing their underlying memory.

#include <pthread.h>

int pthread rwlock_init (pthread_rwlock_t *restrict rwlock,
const pthread rwlockattr_t *restrict attr) ;

int pthread_rwlock_de‘stroy(pthread_rwlock_t *rwlock) ;

Both return: 0 if OK, error number on failure

A reader—writer lock is initialized by calling pthread_rwlock_init. We can pass a
null pointer for attr if we want the reader-writer lock to have the default attributes. We
discuss reader-writer lock attributes in Section 12.4.

Before freeing the memory backing a reader-writer lock, we need to call
pthread_rwlock_destroy to clean it up. If pthread rwlock_init allocated any
resources for the reader-writer lock, pthread rwlock_destroy frees those
resources. If we free the memory backing a reader-writer lock without first calling
pthread_rwlock_destroy, any resources assigned to the lock will be lost.

To lock a reader-writer lock in read mode, we call pthread_rwlock_rdlock. To
write-lock a reader-writer lock, we call pthread_rwlock_wrlock. Regardless of how
we lock a reader—writer lock, we can call pthread_rwlock_unlock to unlock it.

#include <pthread.h>
int pthread rwlock_rdlock (pthread rwlock t *rwlock) ;
int pthread__rwlock__wrlock(pthread_rwlock_t *rwlock) ;

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) ;

All return: 0 if OK, error number on failure

Implementations might place a limit on the number of times a reader-writer lock
can be locked in shared mode, so we need to check the return value of
pthread rwlock_rdlock. Even though pthread rwlock wrlock and
pthread__rwlock_unlock have error returns, we don’t need to check them if we
design our locking properly. The only error returns defined are when we use them
improperly, such as with an uninitialized lock, or when we might deadlock by
attempting to acquire a lock we already own.

The Single UNIX Specification also defines conditional versions of the reader—writer
locking primitives.

#include <pthread.h>
int pthread_rwlock__tryrdlock(pthread_rwlock_t *rwlock) ;
int pthread_rwlock_trywrlock(pthread_rwlock_t: *rwlock) ;

Both return: 0 if OK, error number on failure
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When the lock can be acquired, these functions return 0. Otherwise, they return the
error EBUSY. These functions can be used in situations in which conforming to a lock
hierarchy isn’t enough to avoid a deadlock, as we discussed previously.

Example

The program in Figure 11.13 illustrates the use of reader-writer locks. A queue of job
requests is protected by a single reader-writer lock. This example shows a possible
implementation of Figure 11.1, whereby multiple worker threads obtain jobs assigned to
them by a single master thread.

#include <stdlib.h>
#include <pthread.h>

struct job {
struct job *j next;
struct job *j_prev;
pthread_t j_id; /* tells which thread handles this job */
/* ... more stuff here ... */

}i

struct queue {
struct job *q_head;
struct job *q_tail;
pthread rwlock_t q_lock;

}i
/*

* Initialize a queue.
*/
int
queue_init (struct queue *gp)

{

int err;

gp->q_head = NULL;
qp->q_tail = NULL;
err = pthread rwlock_init (&gp->q_lock, NULL);
if (err != 0)
return(erx) ;

/* ... continue initialization ... */
return(0) ;
}
/*
* Insert a job at the head of the queue.
*/

void
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job_insert (struct queue *gp, struct job *jp)
{
pthread rwlock_wrlock (&gp->q_lock) ;
jp->Jj_next gp->q_head;
jp->j_prev = NULL;
if (gp->g_head != NULL)
gp->q_head->j_prev = jp;
else
ap->q_tail = jp; /* list was empty */
gp->gq_head = jp;
pthread_rwlock_unlock (&qp->q_lock);

1]

}

/*
* Append a job on the tail of the queue.
*/
void
job_append (struct queue *gp, struct job *jp)

pthread rwlock wrlock (&gp->qg_lock) ;
jp->j_next = NULL;
jp->j_prev = gp->q_tail;
if (gp->q_tail != NULL)
gp->g_tail->j_next = jp;
else
ap->q_head = jp; /* list was empty */
gp->q_tail = jp;
pthread_rwlock_unlock (&qp->q_lock) ;

}
/*

* Remove the given job from a queue.
*/
void
job_remove (struct queue *qgp, struct job *jp)
{
pthread_rwlock wrlock (&gp->q_lock);
if (jp == gp->g_head) ({
ap->q_head = jp->j_next;
if (gp->g_tail == jp)
gp->q_tail = NULL;
} else if (jp == gp->q_tail) {
gp->q_tail = jp->j_prev;
if (gp->g_head == jp)
gp->q_head = NULL;
} else {
jp->j_prev->j_next jp->j_next;
jp->j_next->j_prev = jp->j_prev;

pthread_rwlock_unlock (&qp->q_lock) ;
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/*
* Find a job for the given thread ID.
*/

struct job *

job_find(struct queue *gp, pthread t id)

{

struct job *jp;

if (pthread_rwlock_rdlock(&gp->gq lock) != 0)
return (NULL) ;

for (jp = gp->q_head; jp != NULL; jp = jp->j next)
if (pthread equal (jp->j_id, id))
break;

pthread rwlock_unlock (&gqp->g lock) ;
return(jp) ;

Figure 11.13 Using reader-writer locks

In this example, we lock the queue’s reader-writer lock in write mode whenever we
need to add a job to the queue or remove a job from the queue. Whenever we search the
queue, we grab the lock in read mode, allowing all the worker threads to search the
queue concurrently. Using a reader-writer lock will improve performance in this case
only if threads search the queue much more frequently than they add or remove jobs.

The worker threads take only those jobs that match their thread ID off the queue.
Since the job structures are used only by one thread at a time, they don’t need any extra
locking. o

Condition Variables

Condition variables are another synchronization mechanism available to threads.
Condition variables provide a place for threads to rendezvous. When used with
mutexes, condition variables allow threads to wait in a race-free way for arbitrary
conditions to occur.

The condition itself is protected by a mutex. A thread must first lock the mutex to
change the condition state. Other threads will not notice the change until they acquire
the mutex, because the mutex must be locked to be able to evaluate the condition.

Before a condition variable is used, it must first be initialized. A condition variable,
represented by the pthread_cond_t data type, can be initialized in two ways. We can
assign the constant PTHREAD_COND_INITIALIZER to a statically-allocated condition
variable, but if the condition variable is allocated dynamically, we can use the
pthread cond_init function to initialize it.

We can use the pthread mutex_destroy function to deinitialize a condition
variable before freeing its underlying memory.
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#include <pthread.h>

int pthread cond_init (pthread_cond_t *restrict cond,
pthread condattr_t *restrict attr);

int pthread cond destroy (pthread cond_t *cond) ;

Both return: 0 if OK, error number on failure

Unless you need to create a conditional variable with nondefault attributes, the attr
argument to pthread_cond_init can be set to NULL. We will discuss condition
variable attributes in Section 12.4.

We use pthread cond wait to wait for a condition to be true. A variant is
provided to return an error code if the condition hasn’t been satisfied in the specified
amount of time.

#include <pthread.h> j

int pthread cond_wait (pthread _cond_t *restrict cond,
pthread mutex_t *restrict mutex);

int pthread cond_timedwait (pthread cond_t *restrict cond,
pthread mutex_t *restrict mutex,
const struct timespec *restrict timeout);

Both return: 0 if OK, error number on failure

The mutex passed to pthread_cond_wait protects the condition. The caller passes it
locked to the function, which then atomically places the calling thread on the list of
threads waiting for the condition and unlocks the mutex. This closes the window
between the time that the condition is checked and the time that the thread goes to sleep
waiting for the condition to change, so that the thread doesn’t miss a change in the
condition. When pthread cond_wait returns, the mutex is again locked.

The pthread cond_timedwait function works the same as the
pthread cond_wait function with the addition of the timeout. The timeout value
specifies how long we will wait. Itis specified by the t imespec structure, where a time
value is represented by a number of seconds and partial seconds. Partial seconds are
specified in units of nanoseconds:

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

}i

Using this structure, we need to specify how long we are willing to wait as an absolute
time instead of a relative time. For example, if we are willing to wait 3 minutes, instead
of translating 3 minutes into a timespec structure, we need to translate now+3
minutes into a t imespec structure.

We can use gettimeofday (Section 6.10) to get the current time expressed as a
t imeval structure and translate this into a t imespec structure. To obtain the absolute
time for the timeout value, we can use the following function:



384  Threads Chapter 11

void
maketimeout (struct timespec *tsp, long minutes)

{

struct timeval now;

/* get the current time */

gettimeofday (&now) ;

tsp->tv_sec = now.tv_sec;

tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */
/* add the offset to get timeout value */

tsp->tv_sec += minutes * 60;

}

If the timeout expires without the condition occurring, pthread_cond timedwait
will reacquire the mutex and return the error ETIMEDOUT. When it returns from a
successful call to pthread_cond wait or pthread cond_timedwait, a thread
needs to reevaluate the condition, since another thread might have run and already
changed the condition.

There are two functions to notify threads that a condition has been satisfied. The
pthread cond_signal function will wake up one thread waiting on a condition,
whereas the pthread_cond_broadcast function will wake up all threads waiting on
a condition.

The POSIX specification allows for implementations of pthread_cond_signal to wake up
more than one thread, to make the implementation simpler.

#include <pthread.h>
int pthread_cond_signal (pthread_cond t *cond) ;
int pthread cond_broadcast (pthread _cond t *cond) ;

Both return: 0 if OK, error number on failure

When we call pthread_cond_signal or pthread cond broadcast, we are
said to be signaling the thread or condition. We have to be careful to signal the threads
only after changing the state of the condition.

Example

Figure 11.14 shows an example of how to use condition variables and mutexes together
to synchronize threads.

#include <pthread.h>

struct msg {
struct msg *m_next;
/* ... more stuff here ... */

}i
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struct msg *workqg;
pthread cond t gready = PTHREAD COND_INITIALIZER;
pthread mutex_t glock = PTHREAD MUTEX INITIALIZER;

void
process_msg(void)

{

struct msg *mp;

for (;;) {
pthread mutex_ lock (&glock) ;
while (workg == NULL)
pthread cond_wait (&gready, &glock) ;
mp = workq;
workg = mp->m_next;
pthread_mutex_unlock(&qlock);
/* now process the message mp */

}

void

engueue_msg (struct msg *mp)

{
pthread mutex_lock (&glock) ;
mp->m_next = workq;
workg = mp;
pthread mutex_unlock (&glock) ;
pthread_cond_signal(&qready);

Figure 11.14 Using condition variables

The condition is the state of the work queue. We protect the condition with a mutex
and evaluate the condition in a while loop. When we put a message on the work
queue, we need to hold the mutex, but we don’t need to hold the mutex when we signal
the waiting threads. As long as it is okay for a thread to pull the message off the queue
before we call cond_signal, we can do this after releasing the mutex. Since we check
the condition in a while loop, this doesn’t present a problem: a thread will wake up,
find that the queue is still empty, and go back to waiting again. If the code couldn’t

tolerate this race, we would need to hold the mutex when we signal the threads.

11.7 Summary

O

In this chapter, we introduced the concept of threads and discussed the POSIX.1
primitives available to create and destroy them. We also introduced. the problem of
thread synchronization. ~We discussed three fundamental synchronization
mechanisms—mutexes, reader—writer locks, and condition variables—and we saw how

to use them to protect shared resources.
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Exercises

111 Modify the example shown in Figure 114 to pass the structure between the threads
properly.

11.2 In the example shown in Figure 11.13, what additional synchronization (if any) is necessary
to allow the master thread to change the thread ID associated with a pending job? How
would this affect the job_remove function?

113 Apply the techniques shown in Figure 11.14 to the worker thread example (Figure 11.1 and
Figure 11.13) to implement the worker thread function. Don’t forget to update the
queue_init function to initialize the condition variable and change the the job_insert
and job_append functions to signal the worker threads. What difficulties arise?

11.4 Which sequence of steps is correct?

1. Lock a mutex (pthread_mutex_lock).
2. Change the condition protected by the mutex.
3. Signal threads waiting on the condition (pthread cond_broadcast).
4. Unlock the mutex (pthread mutex_unlock).
or
1. Lock a mutex (pthread_mutex_lock).
2. Change the condition protected by the mutex.

3. Unlock the mutex (pthread_mutex_unlock).
4. Signal threads waiting on the condition (pthread_cond_broadcast).
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Thread Control

Introduction

In Chapter 11, we learned the basics about threads and thread synchronization. In this
chapter, we will learn the details of controlling thread behavior. We will look at thread
attributes and synchronization primitive attributes, which we ignored in the previous
chapter in favor of the default behaviors.

We will follow this with a look at how threads can keep data private from other
threads in the same process. Then we will wrap up the chapter with a look at how
some process-based system calls interact with threads.

Thread Limits

We discussed the sysconf function in Section 2.5.4. The Single UNIX Specification
defines several limits associated with the operation of threads, which we didn’t show in
Figure 2.10. As with other system limits, the thread limits can be queried using
sysconf. Figure 12.1 summarizes these limits. v :

As with the other limits reported by sysconf, use of these limits is intended to
promote application portability among different operating system implementations.
For example, if your application requires that you create four threads for every file you
manage, you might have to limit the number of files you can manage concurrently if the
system won't let you create enough threads.

387
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Name of limit

Description

name argument

PTHREAD_DESTRUCTOR_ITERATIONS

PTHREAD_ KEYS MAX

PTHREAD_STACK_MIN

PTHREAD_THREADS MAX

maximum number of times an
implementation will try to
destroy the thread-specific
data when a thread exits
(Section 12.6)

maximum number of keys that can
be created by a process
(Section 12.6)

minimum number of bytes that can
be used for a thread’s stack
(Section 12.3)

maximum number of threads that
can be created in a process

(Section 12.3)

_SC_THREAD_DESTRUCTOR ITERATIONS

_SC_THREAD KEYS MAX

_SC_THREAD_STACK_MIN

_SC_THREAD_THREADS MAX

Figure 12.1 Thread limits and name arguments to sysconf

Figure 12.2 shows the values of the thread limits for the four implementations
described in this book. When the implementation doesn’t define the corresponding
sysconf symbol (starting with _SC_), “no symbol” is listed. If the implementation’s
limit is indeterminate, “no limit” is listed. This doesn’t mean that the value is
unlimited, however. An “unsupported” entry means that the implementation defines
the corresponding sysconf limit symbol, but the sysconf function doesn’t recognize .

it.

~

Note that although an implementation may not provide access to these limits, that doesn't
mean that the limits don’t exist. It just means that the implementation doesn't provide us with
a way to get at them using sysconf.

Limit FreeBSD Linux Mac OS X Solaris
521 2422 10.3 9
PTHREAD_DESTRUCTOR_ITERATIONS nosymbol |unsupported|no symbol |no limit
PTHREAD_KEYS_MAX no symbol  |unsupported {no symbol  |no limit
PTHREAD_STACK_MIN no symbol  |unsupported |no symbol  |4,096
PTHREAD_THREADS MAX no symbol  lunsupported {no symbol  |no limit

Figure 12.2 Examples of thread configuration limits

12.3 Thread Attributes

In all the examples in which we called pthread create in Chapter 11, we passed in a
null pointer instead of passing in a pointer to a pthread_attr_t structure. We can
use the pthread_attr_t structure to modify the default attributes, and associate
these attributes with threads that we create. We use the pthread attr_init function
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to initialize the pthread attr_t structure. After calling pthread_attr_init, the
pthread attr_t structure contains the default values for all the thread attributes
supported by the implementation. To change individual attributes, we need to call
other functions, as described later in this section.

#include <pthread.h>
int pthread attr init(pthread_attr_t *aftr);

int pthread attr destroy (pthread attr t *affr);

Both return: 0 if OK, error number on failure

To deinitialize a pthread_attr_t structure, we call pthread_attr_destroy. If an
implementation of pthread_attr_init allocated any dynamic memory for the
attribute object, pthread attr_destroy will free that memory. In addition,
pthread_attr_destroy will initialize the attribute object with invalid values, so if it
is used by mistake, pthread_create will return an error.

The pthread attr_t structure is opaque to applications. This means that
applications aren’t supposed to know anything about its internal structure, thus
promoting application portability. Following this model, POSIX.1 defines separate
functions to query and set each attribute.

The thread attributes defined by POSIX.1 are summarized in Figure 12.3. POSIX.1
defines additional attributes in the real-time threads option, but we don't discuss those
here. In Figure 12.3, we also show which platforms support each thread attribute. If the
attribute is accessible through an obsolete interface, we show ob in the table entry.

Name Description FreeBSD | Linux |MacOS X| Solaris
5.2.1 2.4.22 10.3 9
detachstate | detached thread attribute . . . .
guardsize |guard buffer size in bytes at end of thread stack ] . .
stackaddr |lowest address of thread stack ob . . ob
stacksize |size in bytes of thread stack . . . .

Figure 12.3 POSIX.1 thread attributes

In Section 11.5, we introduced the concept of detached threads. If we are no longer
interested in an existing thread’s termination status, we can use pthread_detach to
allow the operating system to reclaim the thread’s resources when the thread exits.

If we know that we don’t need the thread’s termination status at the time we create
the thread, we can arrange for the thread to start out in the detached state by modifying
the detachstate thread attribute in the pthread attr_t structure. We can use the
pthread attr_ setdetachstate function to set the detachstate thread attribute to
one of two legal values: PTHREAD_CREATE_DETACHED to start the thread in the
detached state or PTHREAD CREATE_ JOINABLE to start the thread normally, so its
termination status can be retrieved by the application.
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#include <pthread.h>

int pthread_attr_getdetachstate(const pthread attr t *restrict attr,
int *detachstate) ;

int pthread_attr_setdetachstate(pthread_attr t *attr, int detachstate) ;

Both return: 0 if OK, error number on failure

We can call pthread attr_ getdetachstate to obtain the current detachstate
attribute. The integer pointed to by the second argument is set to either
PTHREAD_CREATE_DETACHED or PTHREAD CREATE_JOINABLE, depending on the
value of the attribute in the given pthread_attr_t structure.

Example

Figure 12.4 shows a function that can be used to create a thread in the detached state.

#include "apue.h"
#include <pthread.h>

int
makethread(void *(*fn) (void *), void *arg)
{

int err;

pthread t tid;

pthread attr_t attr;

err = pthread_attr init(&attr);
if (err != 0)
return(err) ;
err = pthread_attr_setdetachstate(&attr, PTHREAD CREATE DETACHED) ;
if (err == 0)
err = pthread create(&tid, &attr, fn, arg);
pthread attr_destroy(&attr);
return(err) ;

Figure 124  Creating a thread in the detached state

Note that we ignore the return value from the call to pthread_attr_destroy. In
this case, we initialized the thread attributes properly, so pthread_attr_destroy
shouldn’t fail. Nonetheless, if it does fail, cleaning up would be difficult: we would
have to destroy the thread we just created, which is possibly already running,
asynchronous to the execution of this function. By ignoring the error return from
pthread_attr_destroy, the worst that can happen is that we leak a small amount of
memory if pthread_attr_init allocated any. But if pthread_attr_init
succeeded in initializing the thread attributes and then pthread_attr_ destroy
failed to clean up, we have no recovery strategy anyway, because the attributes
structure is opaque to the application. The only interface defined to clean up the
structure is pthread_attr_destroy, and it just failed. O
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Support for thread stack attributes is optional for a POSIX-conforming operating
system, but is required if the system is to conform to the XSI. At compile time, you can
check whether your system supports each thread stack attribute using the
_POSIX_THREAD ATTR_STACKADDR and _POSIX_ THREAD ATTR_STACKSIZE
symbols. If one is defined, then the system supports the corresponding thread stack
attribute. You can also check at runtime, by using the _SC_THREAD_ATTR_STACKADDR
and SC THREAD ATTR_STACKSIZE parameters to the sysconf function.

POSIX.1 defines several interfaces to manipulate thread stack attributes. Two older
functions, pthread attr getstackaddr and pthread_attr setstackaddr, are
marked as obsolete in Version 3 of the Single UNIX Specification, although many
pthreads implementations still provide them. The preferred way to query and modify a
thread’s stack attributes is to use the newer functions pthread attr getstack and
pthread_attr setstack. These functions clear up ambiguities present in the
definition of the older interfaces.

#include <pthread.h>

int pthread attr getstack(const pthread_attr_t *restrict atfr,
void **restrict stackaddr,
size t *restrict stacksize) ;

int pthread_attr_setstack(const pthread_attr_t *affr,
void *stackaddr, size_t *stacksize) ;

Both return: 0 if OK, error number on failure

These two functions are used to manage both the stackaddr and the stacksize thread
attributes. '

With a process, the amount of virtual address space is fixed. Since there is only one
stack, its size usually isn’t a problem. With threads, however, the same amount of
virtual address space must be shared by all the thread stacks. You might have to reduce
your default thread stack size if your application uses so many threads that the
cumulative size of their stacks exceeds the available virtual address space. On the other
hand, if your threads call functions that allocate large automatic variables or call
functions many stack frames deep, you might need more than the default stack size.

If you run out of virtual address space for thread stacks, you can use malloc or
mmap (see Section 14.9) to allocate space for an alternate stack and use
pthread attr setstack to change the stack location of threads you create. The
address specified by the stackaddr parameter is the lowest addressable address in the
range of memory to be used as the thread’s stack, aligned at the proper boundary for
the processor architecture.

The stackaddr thread attribute is defined as the lowest memory address for the stack.
This is not necessarily the start of the stack, however. If stacks grow from higher
address to lower addresses for a given processor architecture, the stackaddr thread
attribute will be the end of the stack instead of the beginning.

The drawback with pthreac attr getstackaddr and pthread attr_setstackaddr
is that the stackaddr parameter was underspecified. It could have been interpreted as the start



392  Thread Control Chapter 12

of the stack or as the lowest memory address of the memory extent to use as the stack. On
architectures in which the stacks grow down from higher memory addresses to lower
addresses, if the stackaddr parameter is the lowest memory address of the stack, then you need
to know the stack size to determine the start of the stack. The pthread_attr_getstack and
pthread_attr_setstack functions correct these shortcomings.

Ar. application can also get and set the stacksize thread attribute using the
pthread_attr_getstacksize and pthread_attr_setstacksize functions.

#include <pthread.h>

int pthread_attr_getstacksize(const pthread attr_t *restrict atir,
size_t *restrict stacksize) ;

int pthread attr setstacksize (pthread attr t *attr, size_ t stacksize) ;

Both return: 0 if OK, error number on failure

The pthread_attr_setstacksize function is useful when you want to change the
default stack size but don’t want to deal with allocating the thread stacks on your own.

The guardsize thread attribute controls the size of the memory extent after the end of
the thread’s stack to protect against stack overflow. By default, this is set to PAGESIZE
bytes. We can set the guardsize thread attribute to 0 to disable this feature: no guard
buffer will be provided in this case. Also, if we change the stackaddr thread attribute,
the system assumes that we will be managing our own stacks and disables stack guard
buffers, just as if we had set the guardsize thread attribute to 0.

#include <pthread.h>

int pthread_attr getguardsize(const pthread attr_t *restrict attr,
size_t *restrict guardsize);

int pthread attr_setguardsize (pthread_attr_t *attr, size_t guardsize) ;

Both return: 0 if OK, error number on failure

If the guardsize thread attribute is modified, the operating system might round it up
to an integral multiple of the page size. If the thread’s stack pointer overflows into the
guard area, the application will receive an error, possibly with a signal.

The Single UNIX Specification defines several other optional thread attributes as
part of the real-time threads option. We will not discuss them here.

More Thread Attributes

Threads have other attributes not represented by the pthread _attr_t structure:

¢ The cancelability state (discussed in Section 12.7)
¢ The cancelability type (also discussed in Section 12.7)

¢ The concurrency level
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The concurrency level controls the number of kernel threads or processes on top of
which the user-level threads are mapped. If an implementation keeps a one-to-one
mapping between kernel-level threads and user-level threads, then changing the
concurrency level will have no effect, since it is possible for all user-level threads to be
scheduled.  If the implementation multiplexes user-level threads on top of kernel-level
threads or processes, however, you might be able to improve performance by increasing
the number of userlevel threads that can run at a given time. The
pthread_setconcurrency function can be used to provide a hint to the system of
the desired level of concurrency.

#include <pthread.h>
int pthread getconcurrency (void);
Returns: current concurrency level

int pthread setconcurrency (int level) ;

Returns: 0 if OK, error number on failure

The pthread_getconcurrency function returns the current concurrency level. If
the operating system is controlling the concurrency level (i.e., if no prior call to
pthread_setconcurrency has been made), then pthread_getconcurrency will
return 0.

The concurrency level specified by pthread setconcurrency is only a hint to
the system. There is no guarantee that the requested concurrency level will be honored.
You can tell the system that you want it to decide for itself what concurrency level to
use by passing a level of 0. Thus, an application can undo the effects of a prior call to
pthread_setconcurrency with a nonzero value of level by calling it again with level
set to 0.

12.4 Synchronization Attributes
Just as threads have attributes, so too do their synchronization objects. In this section,
we discuss the attributes of mutexes, reader-writer locks, and condition variables.
Mutex Attributes

We use pthread mutexattr_init to initialize a pthread_mutexattr_t structure
and pthread mutexattr_destroy to deinitialize one.

#include <pthread.h>
int pthread_mutexattr__init(pthread_mutexattr_t *attr) ;

int pthread mutexattr_destroy(pthread mutexattr_t *attr) ;

Both return: 0 if OK, error number on failure
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The pthread mutexattr_init function will initialize the pthread_mutexattr t
structure with the default mutex attributes. Two attributes of interest are the
process-shared attribute and the type attribute. Within POSIX.1, the process-shared
attribute is optional; you can test whether a platform supports it by checking whether
the _POSIX THREAD_ PROCESS_SHARED symbol is defined. You can also check at
runtime by passing the _SC_THREAD PROCESS_SHARED parameter to the sysconf
function. Although this option is not required to be provided by POSIX-conforming
operating systems, the Single UNIX Specification requires that XSI-conforming
operating systems do support this option.

Within a process, multiple threads can access the same synchronization object. This
is the default behavior, as we saw in Chapter 11. In this case, the process-shared mutex
attribute is set to PTHREAD PROCESS_ PRIVATE.

As we shall see in Chapters 14 and 15, mechanisms exist that allow independent
processes to map the same extent of memory into their independent address spaces.
Access to shared data by multiple processes usually requires synchronization, just as
does access to shared data by multiple threads. If the process-shared mutex attribute is
set to PTHREAD_PROCESS_SHARED, a mutex allocated from a memory extent shared
between multiple processes may be used for synchronization by those processes.

We can use the pthread mutexattr_getpshared function to query a
pthread_mutexattr_t structure for its process-shared attribute. We can change the
process-shared attribute with the pthread_mutexattr setpshared function.

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr t *
restrict attr,
int *restrict pshared) ;

int pthread_mutexattr_setpshared(pthread_mutexattr_ t *attr,
int pshared) ;

Both return: 0 if OK, error number on failure

The process-shared mutex attribute allows the pthread library to provide more efficient
mutex implementations when the attribute is set to PTHREAD PROCESS_PRIVATE,
which is the default case with multithreaded applications. Then the pthread library can
restrict the more expensive implementation to the case in which mutexes are shared
among-processes.

The type mutex attribute controls the characteristics of the mutex. POSIX.1 defines
four types. The PTHREAD MUTEX_NORMAL type is a standard mutex that doesn’t do
any special error checking or deadlock detection. The PTHREAD MUTEX ERRORCHECK
mutex type provides error checking.

The PTHREAD_MUTEX_ RECURSIVE mutex type allows the same thread to lock it
multiple times without first unlocking it. A recursive mutex maintains a lock count and
isn’t released until it is unlocked the same number of times it is locked. So if you lock a
recursive mutex twice and then unlock it, the mutex remains locked until it is unlocked
a second time.
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Finally, the PTHREAD_MUTEX DEFAULT type can be used to request default
semantics. Implementations are free to map this to one of the other types. On Linux,
for example, this type is mapped to the normal mutex type.

The behavior of the four types is shown in Figure 12.5. The “Unlock when not
owned” column refers to one thread unlocking a mutex that was locked by a different
thread. The “Unlock when unlocked” column refers to what happens when a thread
unlocks a mutex that is already unlocked, which usually is a coding mistake.

Mutex type Relock without unlock?| Unlock when not owned? | Unlock when unlocked?
PTHREAD_MUTEX_NORMAL deadlock undefined undefined
PTHREAD_ MUTEX_ERRORCHECK returns error returns error returns error
PTHREAD_ MUTEX_RECURSIVE allowed returns error returns error
PTHREAD_MUTEX_DEFAULT undefined undefined undefined

Figure 12.5 Mutex type behavior

We can use pthread mutexattr_gettype to get the mutex type attribute and
pthread mutexattr_settype to change the mutex type attribute.

#include <pthread.h>

int pthread mutexattr_gettype (const pthread mutexattr_t *
restrict attr, int *restrict fype);

int pthread mutexattr_settype (pthread mutexattr_t *qttr, int type) ;

Both return: 0 if OK, error number on failure

Recall from Section 11.6 that a mutex is used to protect the condition that is
associated with a condition variable. Before blocking the thread, the
pthread cond_wait and the pthread cond_t imedwait functions release the
mutex associated with the condition. This allows other threads to acquire the mutex,
change the condition, release the mutex, and signal the condition variable. Since the
mutex must be held to change the condition, it is not a good idea to use a recursive
mutex. If a recursive mutex is locked multiple times and used in a call to
pthread_cond_wait, the condition can never be satisfied, because the unlock done by
pthread_cond_wait doesn’t release the mutex.

Recursive mutexes are useful when you need to adapt existing single-threaded
interfaces to a multithreaded environment, but can’t change the interfaces to your
functions because of compatibility constraints. However, using recursive locks can be
tricky, and they should be used only when no other solution is possible.

Example

Figure 12.6 illustrates a situation in which a recursive mutex might seem to solve a
concurrency problem. Assume that funcl and func2 are existing functions in a
library whose interfaces can't be changed, because applications exist that call them, and
the applications can’t be changed.
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funcl (x)

pthread mutex_lock(x->lock)

func2 (x)

pthread mutex_unlock (x->lock)

func2 (x) > func2

pthread mutex_lock (x->lock)

pthread_mutex_unlock (x->lock)
Figure 12.6 Recursive locking opportunity

To keep the interfaces the same, we embed a mutex in the data structure whose
address (x) is passed in as an argument. This is possible only if we have provided an
allocator function for the structure, so the application doesn’t know about its size
(assuming we must increase its size when we add a mutex to it).

This is also possible if we originally defined the structure with enough padding to allow us
now to replace some pad fields with a mutex. Unfortunately, most programmers are unskilled
at predicting the future, so this is not a common practice.

If both func1l and func2 must manipulate the structure and it is possible to access
it from more than one thread at a time, then funcl and func2 must lock the mutex
before manipulating the data. If func1 must call func2, we will deadlock if the mutex
type is not recursive. We could avoid using a recursive mutex if we could release the
mutex before calling func2 and reacquire it after func2 returns, but this opens a
window where another thread can possibly grab control of the mutex and change the
data structure in the middle of func1. This may not be acceptable, depending on what
protection the mutex is intended to provide.

Figure 12.7 shows an alternative to using a recursive mutex in this case. We can
leave the interfaces to funcl and func2 unchanged and avoid a recursive mutex by
providing a private version of funcz, called func2_locked. To call func2_locked,
we must hold the mutex embedded in the data structure whose address we pass as the
argument. The body of func2_locked contains a copy of func2, and func2 now
simply acquires the mutex, calls func2_locked, and then releases the mutex.
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main
funcl (x) —-————»‘ funcl \
.
pthread mutex lock(x->lock)
func2_locked (x) —
pthread mutex_unlock {x->lock) i
func2 (x) ~>]I—qunc27i {
[ !
pthread mutex_lcck(x->lock) !“
func2_locked(x! — = func2_lock i

pthread_mutex*unlock {x->1lock)

Figure 12.7 Avoiding a recursive locking opportunity

B

If we didn’t have to leave the interfaces to the library functions unchanged, we
could have added a second parameter to each function to indicate whether the structure
is locked by the caller. It is usually better to leave the interfaces unchanged if we can,

however, instead of polluting it with implementation artifacts.

The strategy of providing locked and unlocked versions of functions is usually
applicable in simple situations. In more complex situations, such as when the library
needs to call a function outside the library, which then might call back into the library,

we need to rely on recursive locks.

Example

]

The program in Figure 12.8 illustrates another situation in which a recursive mutex is
necessary. Here, we have a “timeout” function that allows us to schedule another
function to be run at some time in the future. Assuming that threads are an inexpensive
resource, we can create a thread for each pending timeout. The thread waits until the

time has been reached, and then it calls the function we’ve requested.

The problem arises when we can't create a thread or when the scheduled time to
run the function has already passed. In these cases, we simply call the requested
function now, from the current context. Since the function acquires the same lock that

we currently hold, a deadlock will occur unless the lock is recursive.
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#include "apue.h"
#include <pthread.h>
#include <time.h>
#include <sys/time.h>

extern int makethread(void * (*) (void *),

struct to_info {
void (*to_fn) (void *);
void *to arg;
struct timespec to wait;
b
#define SECTONSEC 1000000000
#define USECTONSEC 1000

void *
timeout helper (void *arg)

{

struct to_info *tip;

tip =

return(0) ;

}

void

(struct to_info *)arg;
nanosleep (&tip->to wait, NULL);
(*tip->to_fn) (tip->to_arg);

/*
/*
/*

/*
/*

void *);

function */
argument */
time to wait */

seconds to nanoseconds */
microseconds to nanoseconds */

timeout (const struct timespec *when, void (*func) (void *), void *arg)

{

struct timespec now;
struct timeval tv;

struct to_info *tip;
int err;

gettimeofday (&tv, NULL);
now.tv_sec = tv.tv_sec;
now.tv_nsec =

if ((when->tv_sec > now.tv_sec)

tv.tv_usec * USECTONSEC;

(when->tv_sec == now.tv_sec && when->tv_nsec > now.tv nsec)) {
tip = malloc(sizeof (struct to_info));

if (tip != NULL) {
tip->to _fn =

func;
tip->to_arg = arg;
tip->to_wait.tv_sec

when->tv_sec - now.tv_sec;

if (when->tv_nsec >= now.tv nsec) {
tip->to_wait.tv_nsec = when->tv_nsec - now.tv_nsec;

} else {

tip->to_wait.tv_sec--;
tip->to_wait.tv_nsec = SECTONSEC - now.tv _nsec +

when->tv nsec;
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}

}

err = makethread (timeout_helper, (void *)tip);
if (err == 0)
return;

}
/*

* We get here if (a) when <= now, OIr (b) malloc fails, or
* (c) we can’'t make a thread, so we just call the function now.
*/

(*func) (arg) ;

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void
retry (void *arg)

{

}

int

pthread_mutex_lock(&mutex);
/* perform retry steps ... */
pthread_mutex_unlock(&mutex);

main (void)

{

int err, condition, arg;
struct timespec when;

if ((err = pthread_mutexattr_init(&attr)) 1= 0)
err_exit (err, "pthread_mutexattr_init failed");
if ((err = pthread_mutexattr_settype(&attr,

PTHREAD MUTEX_RECURSIVE)) != 0)
err_exit(err, "can’t set recursive type") ;
if ((err = pthread_mutex_init(&mutex, gattr)) != 0)
err_exit(err, "can’'t create recursive mutex");
VARV
pthread_mutex_lock(&mutex);
/* oo *

if (condition) {
/* calculate target time "when" */
timeout (&when, retry, (void *)arg);
}
/* L. %/
pthread_mutex_unlock(&mutex);
Jx L. %/
exit (0);

Figure 128 Usinga recursive mutex
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We use the makethread function from Figure 12.4 to create a thread in the
detached state. We want the function to run in the future, and we don’t want to wait
around for the thread to complete.

We could call sleep to wait for the timeout to expire, but that gives us only second
granularity. If we want to wait for some time other than an integral number of seconds,
we need to use nanosleep(2), which provides similar functionality.

Although nanosleep is required to be implemented only in the real-time extensions of the
Single UNIX Specification, all the platforms discussed in this text support it.

The caller of t imeout needs to hold a mutex to check the condition and to schedule
the retry function as an atomic operation. The retry function will try to lock the
same mutex. Unless the mutex is recursive, a deadlock will occur if the timeout
function calls retry directly. Cl

Reader—Writer Lock Attributes

Reader-writer locks also have attributes, similar to mutexes. We use
pthread rwlockattr init to initialize a pthread rwlockattr t structure and
pthread rwlockattr destroy to deinitialize the structure.

#include <pthread.h>
int pthread_rwlockattr_ init (pthread rwlockattr t *aftr);

int pthread_rwlockattr destroy (pthread_rwlockattr t *attr);

Both return: 0 if OK, error number on failure ‘

The only attribute supported for reader-writer locks is the process-shared attribute.
It is identical to the mutex process-shared attribute. Just as with the mutex process-shared
attributes, a pair of functions is provided to get and set the process-shared attributes of
reader—writer locks.

#include <pthread.hs>

int pthread rwlockattr getpshared(const pthread_rwlockattr t *
restrict attr,
int *restrict pshared) ;

int pthread_rwlockattr_setpshared(pthread_rwlockattr t *attr,
int pshared) ;

Both return: 0 if OK, error number on failure

Although POSIX defines only one reader-writer lock attribute, implementations are free
to define additional, nonstandard ones.



Section 12.5 Reentrancy 401

Condition Variable Attributes

Condition variables have attributes, too. There is a pair of functions for initializing and
deinitializing them, similar to mutexes and reader—writer locks.

#include <pthread.h>

int pthread condattr destroy(pthread_condattr_t *attr);

|
|
‘ Both return: 0 if OK, error number on failure

int pthread condattr_ init(pthread condattr_t *aftr); ‘
|
|

Just as with the other synchronization primitives, condition variables support the
process-shared attribute.

#include <pthread.h>

int pthread condattr getpshared(const pthread condattr_t *
restrict attr,
int *restrict pshared) ;

int pthread condattr setpshared(pthread condattr_t *attr,
int pshared) ;

i Both return: 0 if OK, error number on failure

12.5 Reentrancy

We discussed reentrant functions and signal handlers in Section 10.6. Threads are
similar to signal handlers when it comes to reentrancy. With both signal handlers and
threads, multiple threads of control can potentially call the same function at the same
time.

If a function can be safely called by multiple threads at the same time, we say that
the function is thread-safe. All functions defined in the Single UNIX Specification are
guaranteed to be thread-safe, except those listed in Figure 12.9. In addition, the
ctermid and tmpnam functions are not guaranteed to be thread-safe if they are passed
a null pointer. Similarly, there is no guarantee that wcrtomb and wcsrtombs are
thread-safe when they are passed a null pointer for their mbstate_t argument.

Implementations  that support thread-safe functions will define the
_POSIX_THREAD SAFE_FUNCTIONS symbol in <unistd.h>. Applications can also
use the SC_THREAD SAFE_FUNCTIONS argument with sysconf to check for support
of thread-safe functions at runtime. All XSI-conforming implementations are required
to support thread-safe functions.

When it supports the thread-safe functions feature, an implementation provides
alternate, thread-safe versions of some of the POSIX.1 functions that aren’t thread-safe.
Figure 12.10 lists the thread-safe versions of these functions. Many functions are not
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asctime
basename
catgets
crypt

ctime

dbm clearerr
dbm_close
dbm_delete
dbm_error
dbm_fetch
dbm_firstkey
dbm_nextkey
dbm_open
dbm_store
dirname
dlerror
drand48

ecvt

encrypt
endgrent
endpwent
endutxent
fcovt

ftw

gcvt
getc_unlocked
getchar_unlocked
getdate
getenv
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname

% gethostent

getlogin
getnetbyaddr
getnetbyname
getnetent
getopt
getprotobyname
getprotobynumber
getprotoent
getpwent
getpwnam
getpwuid
getservbyname
getservbyport
getservent
getutxent
getutxid

getutxline
gmtime
hcreate
hdestroy
hsearch
inet _ntoa
lée4da
lgamma
lgammaf
lgammal
localeconv
localtime
lrand4s
mrand48
nftw

nl langinfo
ptsname

putc_unlocked
putchar_unlocked
putenv
pututxline
rand

readdir
setenv
setgrent
setkey
setpwent
setutxent
strerror
strtok
ttyname
unsetenv
wcstombs
wctomb

Figure 12.9 Functions not guaranteed to be thread-safe by POSIX.1

thread-safe, because they return data stored in a static memory buffer. They are made
thread-safe by changing their interfaces to require that the caller provide its own buffer.
The functions listed in Figure 12.10 are named the same as their non-thread-safe
relatives, but with an _r appended at the end of the name, signifying that these
versions are reentrant.
If a function is reentrant with respect to multiple threads, we say that it is

thread-safe.

This doesn’t tell us, however, whether the function is reentrant with

respect to signal handlers. We say that a function that is safe to be reentered from an
asynchronous signal handler is async-signal safe. We saw the async-signal safe functions
in Figure 10.4 when we discussed reentrant functions in Section 10.6.

getgrnam_r
getlogin_r
getpwnam_r’
getpwuid r

acstime_r gmtime_r
ctime r localtime_r
getgrgid r | rand r

readdir_r

strtok_r
ttyname_r

strerror_r

Figure 12.10 Alternate thread-safe functions

In addition to the functions listed in Figure 12.10, POSIX.1 provides a way to
manage FILE objects in a thread-safe way. You can use flockfile and
ftrylockfile to obtain a lock associated with a given FILE object. This lock is
recursive: you can acquire it again, while you already hold it, without deadlocking.
Although the exact implementation of the lock is unspecified, it is required that all
standard I/O routines that manipulate FILE objects behave as if they call flockfile
and funlockfile internally.
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#include <stdio.h>
int ftrylockfile(FILE *fp);
Returns: 0 if OK, nonzero if lock can’t be acquired

void flockfile (FILE *fp);

void funlockfile(FILE *fp);

Although the standard 1/O routines might be implemented to be thread-safe from
the perspective of their own internal data structures, it is still useful to expose the
locking to applications. This allows applications to compose multiple calls to standard
1/0 functions into atomic sequences. Of course, when dealing with multiple FILE
objects, you need to beware of potential deadlocks and to order your locks carefully.

If the standard /O routines acquire their own locks, then we can run into serious
performance degradation when doing character-at-a-time 1/O. In this situation, we end
up acquiring and releasing a lock for every character read or written. To avoid this
overhead, unlocked versions of the character-based standard 1/O routines are available.

r #include <stdio.h>
int getchar unlocked(void);
int getc_unlocked(FILE *fp);
Both return: the next character if OK, EOF on end of file or error
int putchar_unlocked(int c);

int putc_unlocked (int ¢, FILE *fp);

L Both return: ¢ if OK, EOF on error J

These four functions should not be called unless surrounded by calls to f1ockf ile
(or ftrylockfile) and funlockfile. Otherwise, unpredictable results can occur
(i.e., the types of problems that result from unsynchronized access to data by multiple
threads of control).

Once you lock the FILE object, you can make multiple calls to these functions
before releasing the lock. This amortizes the locking overhead across the amount of
data read or written.

Example

Figure 12.11 shows a possible implementation of getenv (Section 7.9). This version is
not reentrant. If two threads call it at the same time, they will see inconsistent results,
because the string returned is stored in a single static buffer that is shared by all threads
calling getenv.
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#include <limits.h>
#include <string.h>

static char envbuf [ARG MAX] ;
extern char **environ;

char *
getenv (const char *name)

{

int i, len;

len = strlen{name;;
for (i 0; environ[i] != NULL; i++) {
if ((strncmp(name, environ(i], len) == 0) &&

’

(environ[i] {len] == '=")) {
strcpy (envbuf, &environ([i] [len+1]);
return (envbuf) ;

1

}

return (NULL) ;

Figure 12.11 A nonreentrant version of getenv

We show a reentrant version of getenv in Figure 12.12. This version is called
getenv_r. It uses the pthread_once function (described in Section 12.6) to ensure
that the thread_init function is called only once per process.

#include <string.hs
#include <errno.h>

#include <pthread.h>
#include <stdlib.h>

extern char **environ;

pthread_mutex_t env mutex;
static pthread_once_ t init done = PTHREAD_ONCE_INIT;

static void
thread_init (void)

{

pthread mutexattr t attr;

pthread mutexattr init (&attr);

pthread mutexattr settype(&attr, PTHREAD_MUTEX_ RECURSIVE) ;
pthread mutex_init (&env_mutex, &attr);

pthread mutexattr destroy(&attr) ;
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int
getenv_r(const char *name, char *buf, int buflen)

{

int i, len, olen;

pthread once (&init_done, thread_init);
len = strlen(name);
pthread mutex_lock (&env_mutex) ;

for (i = 0; environ[i] != NULL; i+4) |
if ({strncmp (name, environ[i], len) == 0) &&
(environ[il [len] == '=")) {
olen = strlen(genviron(il [len+1]);
if (olen »= buflen) { -
pthread_mutex_unlock(&env#mutex);
return (ENOSPC) ;
}
strcpy (buf, senviron{i] [len+1]);
pthreadfmutexvunlock(&env_mutex);
return(0) ;
}
1

pthreadwmutexfunlock(&env_mutex);
return (ENOENT) ;

Figure 12.12 A reentrant (thread-safe) version of getenv

To make getenv_r reentrant, we changed the interface so that the caller must
provide its own buffer. Thus, each thread can use a different buffer to avoid interfering
with the others. Note, however, that this is not enough to make getenv_r thread-safe.
To make getenv_r thread-safe, we need to protect against changes to the environment
while we are searching for the requested string. We can use a mutex to serialize access
to the environment list by getenv_r and putenv.

We could have used a reader-writer lock to allow multiple concurrent calls to
getenv_r, but the added concurrency probably wouldn’t improve the performance of
our program by very much, for two reasons. First, the environment list usually isn't
very long, so we won't hold the mutex for too long while we scan the list. Second, calls
to getenv and putenv are infrequent, so if we improve their performance, we won't
affect the overall performance of the program very much.

If we make getenv_r thread-safe, that doesn’t mean that it is reentrant with
respect to signal handlers. If we use a nonrecursive mutex, we run the risk that a thread
will deadlock itself if it calls getenv_r from a signal handler. If the signal handler
interrupts the thread while it is executing getenv_r, we will already be holding
env_mutex locked, so another attempt to lock it will block, causing the thread to
deadlock. Thus, we must use a recursive mutex to prevent other threads from changing
the data structures while we look at them, and also prevent deadlocks from signal
handlers. The problem is that the pthread functions are not guaranteed to be
async-signal safe, so we can’t use them to make another function async-signal safe. O
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12.6

Thread-Specific Data

Thread-specific data, also known as thread-private data, is a mechanism for storing and
finding data associated with a particular thread. The reason we call the data
thread-specific, or thread-private, is that we’d like each thread to access its own separate
copy of the data, without worrying about synchronizing access with other threads.

Many people went to a lot of trouble designing a threads model that promotes
sharing process data and attributes. So why would anyone want to promote interfaces
that prevent sharing in this model? There are two reasons.

First, sometimes we need to maintain data on a per thread basis. Since there is no
guarantee that thread IDs are small, sequential integers, we can’t simply allocate an
array of per thread data and use the thread ID as the index. Even if we could depend
on small, sequential thread IDs, we’d like a little extra protection so that one thread
can’t mess with another’s data.

The second reason for thread-private data is to provide a mechanism for adapting
process-based interfaces to a multithreaded environment. An obvious example of this is
errno. Recall the discussion of errno in Section 1.7. Older interfaces (before the
advent of threads) defined errno as an integer accessible globally within the context of
a process. System calls and library routines set errno as a side effect of failing. To
make it possible for threads to use these same system calls and library routines, errno
is redefined as thread-private data. Thus, one thread making a call that sets errno
doesn’t affect the value of errno for the other threads in the process. ‘

Recall that all threads in a process have access to the entire address space of the
process. Other than using registers, there is no way for one thread to prevent another
from accessing its data. This is true even for thread-specific data. Even though the
underlying implementation doesn’t prevent access, the functions provided to manage
thread-specific data promote data separation among threads.

Before allocating thread-specific data, we need to create a key to associate with the
data. The key will be used to gain access to the thread-specific data. We use
pthread key_ create to create a key.

#include <pthread.h»>

int pthread key_ create (pthread_key t *keyp,
void (*destructor) (void *));

Returns: 0 if OK, error number on failure

The key created is stored in the memory location pointed to by keyp. The same key can
be used by all threads in the process, but each thread will associate a different
thread-specific data address with the key. When the key is created, the data address for
each thread is set to a null value.

In addition to creating a key, pthread key create associates an optional
destructor function with the key. When the thread exits, if the data address has been set
to a non-null value, the destructor function is called with the data address as the only
argument. If destructor is null, then no destructor function is associated with the key.
When the thread exits normally, by calling pthread exit or by returning, the
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destructor is called. But if the thread calls exit, exit, _Exit, or abort, or otherwise
exits abnormally, the destructor is not called.

Threads usually use malloc to allocate memory for their thread-specific data. The
destructor function usually frees the memory that was allocated. If the thread exited
without freeing the memory, then the memory would be lost: leaked by the process.

A thread can allocate multiple keys for thread-specific data. Each key can have a
destructor associated with it. There can be a different destructor function for each key,
or they can all use the same function. Each operating system implementation can place
a limit on the number of keys a process can allocate (recall PTHREAD_KEYS_MAX from
Figure 12.1).

When a thread exits, the destructors for its thread-specific data are called in an
implementation-defined order. 1t is possible for the destructor function to call another
function that might create new thread-specific data and associate it with the key. After
all destructors are called, the system will check whether any non-null thread-specific
values were associated with the keys and, if so, call the destructors again. This process
will repeat until either all keys for the thread have null thread-specific data values or a
maximum of PTHREAD DESTRUCTOR_ITERATIONS (Figure 12.1) attempts have been
made.

We can break the association of a key with the thread-specific data values for all
threads by calling pthread key_ delete.

#include <pthread.h>

int pthreadﬂkey_delete(pthread_key_t *key) ;

Returns: 0 if OK, error number on failure

Note that calling pthread key_delete will not invoke the destructor function
associated with the key. To free any memory associated with the key’s thread-specific
data values, we need to take additional steps in the application.

We need to ensure that a key we allocate doesn’t change because of a race during
initialization. Code like the following can result in two threads both calling
pthread _key_create: :

void destructor (void *);

pthread_key_t key:
int init_done = 0;

int
threadfunc (void *arg)
if (linit_done) {

init_done = 1; .
err = pthread_key_‘create(&key, destructor) ;
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Depending on how the system schedules threads, some threads might see one key
value, whereas other threads might see a different value. The way to solve this race is
to use pthread once.

#include <pthread.h> ]
pthread once_t initflag = PTHREAD ONCE_INIT;

int pthread once (pthread_once_t *initflag, void (*initfn) (void))

i

Returns: 0 if OK, error number on failure ’

The initflag must be a nonlocal variable (i.e., global or static) and initialized to
PTHREAD ONCE INIT.

If each thread calls pthread once, the system guarantees that the initialization
routine, initfn, will be called only once, on the first call to pthread_once. The proper
way to create a key without a race is as follows:

void destructor (void *);

pthread_key t key;
pthread_once_t init done = PTHREAD_ONCE_INIT;

void
thread_init (void)

{
}

int
threadfunc(void *arg)

{

err = pthread key create(&key, destructor);

pthread_once (&init_done, thread_init) ;

}

Once a key is created, we can associate thread-specific data with the key by calling
pthread setspecific. We can obtain the address of the thread-specific data with
pthread getspecific.

#include <pthread.h>
void *pthread_getspecific(pthread_key_t key) ;

Returns: thread-specific data value or NULL if no value
has been associated with the key

int pthread setspecific (pthread_key t key, const void *value) ;

Returns: 0 if OK, error number on failure
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If no thread-specific data has been assoc
return a null pointer. We can use t

pthread_setspecift ic.

Example

In Figure 12.11, we showed a hypothetical impl
with a new interface to provide the same functionality,
(Figure 12.12). But what would happen if we couldn’t modify our application programs
to use the new interface? In that case, we coul

per thread copy of

Figure 12.13.

iated with a key, pthread getspecific will
his to determine whether we need to call

ementation of getenv. We came up

but in a thread-safe way

d use thread-specific data to maintain a
the data buffer used to hold the return string. This is shown in

#include <limits.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>

static pthread key_t key;
static pthread_once_t init _done = PTHREAD ONCE_INIT;
pthread mutex t env_mutex = PTHREAD MUTEX_INITIALIZER;

extern char **environ;

static void
thread init (void)

{

pthread_key_create(&key, free);
}
char *

getenv (const char *name)

{

int i, len;
char *envbuf ;

pthread_once(&init_done, thread_init);
pthreadﬁmutex_lock(&env_mutex);

envbuf = (char *)pthread_getspecific(key);
if (envbuf == NULL) {

envbuf = malloc (ARG_MAX) ;

if (envbuf == NULL) {

pthread_mutex_unlock(&env_mutex;;
return (NULL) ;

}
pthread_setspecific(key, envbuf) ;
}
len = strlen(name);
for (i = 0; environli] != NULL; i++) {
if ((strncmp(name, environ{i], len) == 0)

&&
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(environ[i] [len] == '=")) {
strcpy (envbuf, &environ[i] [len+1]);
pthread_mutex_unlock (&env_mutex) ;
return(envbuf) ;
}

}

pthread mutex_unlock (&env_mutex) ;

return (NULL) ;

}
Figure 12.13 A thread-safe, compatible version of getenv

We use pthread_once to ensure that only one key is created for the thread-specific
data we will use. If pthread getspecific returns a null pointer, we need to allocate
the memory buffer and associate it with the key. Otherwise, we use the memory buffer
returned by pthread_getspecific. For the destructor function, we use free to free
the memory previously allocated by malloc. The destructor function will be called
with the value of the thread-specific data only if the value is non-null.

Note that although this version of getenv is thread-safe, it is not async-signal safe.
Even if we made the mutex recursive, we could not make it reentrant with respect to
signal handlers, because it calls malloc, which itself is not async-signal safe. ]

12.7 Cancel Options

Two thread attributes that are not included in the pthread attr_t structure are the
cancelability state and the cancelability type. These attributes affect the behavior of a
thread in response to a call to pthread_cancel (Section 11.5).

The cancelability state attribute can be either PTHREAD_ CANCEL_ENABLE or
PTHREAD_CANCEL_DISABLE. A thread can change its cancelability state by calling
pthread_setcancelstate.

#include <pthread.h>

int pthread_setcancelstate (int state, int *oldstate) ;

Returns: 0 if OK, error number on failure

In one atomic operation, pthread_setcancelstate sets the current cancelability state
to state and stores the previous cancelability state in the memory location pointed to by
oldstate.

Recall from Section 11.5 that a call to pthread_cancel doesn’t wait for a thread to
terminate. In the default case, a thread will continue to execute after a cancellation
request is made, until the thread reaches a cancellation point. A cancellation point is a
place where the thread checks to see whether it has been canceled, and then acts on the
request. POSIX.1 guarantees that cancellation points will occur when a thread calls any
of the functions listed in Figure 12.14.
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aio_suspend I msgrcv pwrite sigtimedwait |
'clock_nanosleep ‘ msgsnd read sigwait

close ] msync readv sigwaitinfo '
connect nanosleep recv sleep

creat open recvirom system l
fentl2 pause recvmsg tcdrain \
fsync ‘ poll select usleep 1
getmsg ‘ pread sem_timedwait wait i
getpusg pthread_cond_timedwait sem_wait | waitid i
lockf ‘ pthread_cond_wait send I waitpid l
mg_receive ‘ pthread_join sendmsg | write ‘
mg_send pthread_testcancel sendto writev ]
Lmq;timedreceive putmsg Lgigpause

Figure 12.14 Cancellation points defined by POSIX.1

A thread starts with a default cancelability state of PTHREAD CANCEL_ENABLE.
When the state is set to PTHREAD_CANCEL_DISABLE, a call to pthread cancel will
not kill the thread. Instead, the cancellation request remains pending for the thread.
When the state is enabled again, the thread will act on any pending cancellation
requests at the next cancellation point.

In addition to the functions listed in Figure 12.14, POSIX.1 specifies the functions
listed in Figure 12.15 as optional cancellation points.

Note that several of the functions listed in Figure 12.15 are not discussed further in this text.
Many are optional in the Single UNIX Specification.

If your application doesn’t call one of the functions in Figure 12.14 or Figure 12.15
for a long period of time (if it is compute-bound, for example), then you can call
pthread testcancel toadd your own cancellation points to the program.

#include <pthread.h>

void pthread testcancel (void);

When you call pthread_testcancel, if a cancellation request is pending and if
cancellation has not been disabled, the thread will be canceled. When cancellation is
disabled, however, calls to pthread_testcancel have no effect.

The default cancellation type we have been describing is known as deferred
cancellation. After a call to pthread _cancel, the actual cancellation doesn’t occur
until the thread hits a cancellation point. We can change the cancellation type by calling
pthread_setcanceltype.

#include <pthread.h>
int pthread setcanceltype (int fype, int *oldtype) ;

Returns: 0 if OK, error number on failure
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Figure 12.15 Optional cancellation points defined by POSIX.1
The type parameter can be either

PTHREAD CANCEL_ DEFERRED

or

PTHREAD_CANCEL_ASYNCHRONOUS. The pthread setcanceltype function sets the

cancellation type to type and returns the
oldtype.

previous type in the integer pointed to by

Asynchronous cancellation differs from deferred cancellation in that the thread can

be canceled at any time. The thread doesn’t necessarily need to hit a

for it to be canceled.

cancellation point
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12.8 Threads and Signals

Dealing with signals can be complicated even with a process-based paradigm.
Introducing threads into the picture makes things even more complicated.

Each thread has its own signal mask, but the signal disposition is shared by all
threads in the process. This means that individual threads can block signals, but when a
thread modifies the action associated with a given signal, all threads share the action.
Thus, if one thread chooses to ignore a given signal, another thread can undo that
choice by restoring the default disposition or installing a signal handler for the signal.

Signals are delivered to a single thread in the process. If the signal is related to a
hardware fault or expiring timer, the signal is sent to the thread whose action caused the
event. Other signals, on the other hand, are delivered to an arbitrary thread.

In Section 10.12, we discussed how processes can use sigprocmask to block
signals from delivery. The behavior of sigprocmask is undefined in a multithreaded
process. Threads have to use pthread_s igmask instead.

#include <signal.h> \

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

Returns: 0 if OK, error number on failure

The pthread sigmask function is identical to sigprocmask, except that
pthread_sigmask works with threads and returns an error code on failure instead of
setting errno and returning —1.

A thread can wait for one or more signals to occur by calling sigwait.

#include <signal.h>
int sigwait(const sigset_t *restrict sef, int *restrict signop);

Returns: 0 if OK, error number on failure

The set argument specifies the set of signals for which the thread is waiting. On return,
the integer to which signop points will contain the number of the signal that was
delivered.

If one of the signals specified in the set is pending at the time sigwait is called,
then sigwait will return without blocking. Before returning, sigwait removes the
signal from the set of signals pending for the process. To avoid erroneous behavior, a
thread must block the signals it is waiting for before calling sigwait. The sigwait
function will atomically unblock the signals and wait until one is delivered. Before
returning, sigwait will restore the thread’s signal mask. If the signals are not blocked
at the time that sigwait is called, then a timing window is opened up where one of the
signals can be delivered to the thread before it completes its call to sigwait.

The advantage to using sigwait is that it can simplify signal handling by allowing
us to treat asynchronously-generated signals in a synchronous manner. We can prevent
the signals from interrupting the threads by adding them to each thread’s signal mask.
Then we can dedicate specific threads to handling the signals. These dedicated threads
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can make function calls without having to worry about which functions are safe to call
from a signal handler, because they are being called from normal thread context, not
from a traditional signal handler interrupting a normal thread’s execution.

If multiple threads are blocked in calls to sigwait for the same signal, only one of
the threads will return from sigwait when the signal is delivered. If a signal is being
caught (the process has established a signal handler by using sigaction, for example)
and a thread is waiting for the same signal in a call to sigwait, it is left up to the
implementation to decide which way to deliver the signal. In this case, the
implementation could either allow sigwait to return or invoke the signal handler, but
not both.

To send a signal to a process, we call kill (Section 10.9). To send a signal to a
thread, we call pthread_kill.

#include <signal.h>
int pthread kill(pthread_t thread, int signo) ;

Returns: 0 if OK, error number on failure

We can pass a signo value of 0 to check for existence of the thread. If the default action
for a signal is to terminate the process, then sending the signal to a thread will still kill
the entire process.

Note that alarm timers are a process resource, and all threads share the same set of
alarms. Thus, it is not possible for multiple threads in a process to use alarm timers
without interfering (or cooperating) with one another (this is the subject of-
Exercise 12.6).

Example

Recall that in Figure 10.23, we waited for the signal handler to set a flag indicating that
the main program should exit. The only threads of control that could run were the main
thread and the signal handler, so blocking the signals was sufficient to avoid missing a
change to the flag. With threads, we need to use a mutex to protect the flag, as we show
in the program in Figure 12.16.

#include "apue.h"
#include <pthread.h>

int quitflag; /* set nonzero by thread */
sigset_t mask ;

pthread mutex_t lock = PTHREAD MUTEX_ INITIALIZER;
pthread cond_t wait = PTHREAD_COND_INITIALIZER;

void *
thr_fn(void *arg)

{

int err, signo;

for (;;) {
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err = sigwait (&mask, &signo);
if (err != 0)
~ err_exit(err, "sigwait failed");
switch (signo) {
case SIGINT:
printf("\ninterrupt\n");
break;
case SIGQUIT:
pthread mutex_lock (&lock) ;
quitflag = 1;
pthread mutex_unlock (&lock) ;
pthread cond_signal (&wait);
return(0) ;
default:
printf ("unexpected signal $d\n", signo);
exit (1) ;
}
}
}
int
main{void)
{
int err;
sigset_t oldmask;
pthread t tid;
sigemptyset (&mask) ;
sigaddset (&mask, SIGINT);
sigaddset (&mask, SIGQUIT):
if ((err = pthread_sigmask (SIG_BLOCK, smask, &oldmask)) != 0)
err_exit (err, "SIG_BLOCK error"); '
err = pthread create(&tid, NULL, thr_ fn, 0);
if (err != 0)
err_exit(err, "can't create thread") ;
pthread mutex_lock (&lock) ;
while (quitflag == 0)
pthread_cond_wait (&wait, &lock);
pthread mutex_unlock (&lock) ;
/* SIGQUIT has been caught and is now blocked; do whatever */
quitflag = 0;
/* reset signal mask which unblocks SIGQUIT */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys ("SIG_SETMASK error");
exit (0);
}

Figure 12.16 Synchronous signal handling
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Instead of relying on a signal handler that interrupts the main thread of control, we
dedicate a separate thread of control to handle the signals. We change the value of
quitflag under the protection of a mutex so that the main thread of control can’t miss
the wake-up call made when we call pthread _cond_signal. We use the same mutex
in the main thread of control to check the value of the flag, and atomically release the
mutex and wait for the condition.

Note that we block SIGINT and SIGQUIT in the beginning of the main thread.
When we create the thread to handle signals, the thread inherits the current signal
mask. Since sigwait will unblock the signals, only one thread is available to receive
signals. This enables us to code the main thread without having to worry about
interrupts from these signals.

If we run this program, we get output similar to that from Figure 10.23:

$ ./a.out

~? type the interrupt character
interrupt

~? type the interrupt character again
interrupt

“? and again

interrupt

“\ s now terminate with quit character

a

Linux implements threads as separate processes, sharing resources using clone(2). Because of
this, the behavior of threads on Linux differs from that on other implementations when it
comes to signals. In the POSIX.1 thread model, asynchronous signals are sent to a process, and
then an individual thread within the process is selected to receive the signal, based on which
threads are not currently blocking the signal. On Linux, an asynchronous signal is sent to a
particular thread, and since each thread executes as a separate process, the system is unable to
select a thread that isn’t currently blocking the signal. The result is that the thread may not
notice the signal. Thus, programs like the one in Figure 12.16 work when the signal is
generated from the terminal driver, which signals the process group, but when you try to send
a signal to the process using kil1l, it doesn’t work as expected on Linux.

12.9 Threads and fork

When a thread calls fork, a copy of the entire process address space is made for the
child. Recall the discussion of copy-on-write in Section 8.3. The child is an entirely
different process from the parent, and as long as neither one makes changes to its
memory contents, copies of the memory pages can be shared between parent and child.

By inheriting a copy of the address space, the child also inherits the state of every
mutex, reader—writer lock, and condition variable from the parent process. If the parent
consists of more than one thread, the child will need to clean up the lock state if it isn’t
going to call exec immediately after fork returns.

Inside the child process, only one thread exists. It is made from a copy of the thread
that called fork in the parent. If the threads in the parent process hold any locks, the
locks will also be held in the child process. The problem is that the child process doesn't
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s

-

contain copies of the threads holding the locks, so there is no way for the child to know
which locks are held and need to be unlocked.

This problem can be avoided if the child calls one of the exec functions directly
after returning from fork. In this case, the old address space is discarded, so the lock
state doesn’t matter. This is not always possible, however, so if the child needs to
continue processing, we need to use a different strategy.

To clean up the lock state, we can establish fork handlers by calling the function
pthread_atfork.

#include <pthread.h>

int pthread_atfork(void (*prepare) (void), void (*parent) (void),
void (*child) (void));

Returns: 0 if OK, error number on failure

With pthread_atfork, we can install up to three functions to help clean up the
locks. The prepare fork handler is called in the parent before fork creates the child
process. This fork handler’s job is to acquire all locks defined by the parent. The parent
fork handler is called in the context of the parent after fork has created the child
process, but before fork has returned. This fork handler’s job is to unlock all the locks
acquired by the prepare fork handler. The child fork handler is called in the context of
the child process before returning from fork. Like the parent fork handler, the child fork
handler too must release all the locks acquired by the prepare fork handler.

Note that the locks are not locked once and unlocked twice, as it may appear. When
the child address space is created, it gets a copy of all locks that the parent defined.
Because the prepare fork handler acquired all the locks, the memory in the parent and
the memory in the child start out with identical contents. When the parent and the
child unlock their “copy” of the locks, new memory is allocated for the child; and the
memory contents from the parent are copied to the child’s memory (copy-on-write), sO
we are left with a situation that looks as if the parent locked all its copies of the locks
and the child locked all its copies of the locks. The parent and the child end up
unlocking duplicate locks stored in different memory locations, as if the following
sequence of events occurred. . ‘

1. The parent acquired all its locks.
2. The child acquired all its locks.
3. The parent released its locks.

4. The child released its locks.

We can call pthread_atfork multiple times to install more than one set of fork
handlers. If we don’t have a need to use one of the handlers, we can pass a null pointer
for the particular handler argument, and it will have no effect. When multiple fork
handlers are used, the order in which the handlers are called differs. The parent and
child fork handlers are called in the order in which they were registered, whereas the
prepare fork handlers are called in the opposite order from which they were registered.
This allows multiple modules to register their own fork handlers and still honor the
locking hierarchy.
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For example, assume that module A calls functions from module B and that each
module has its own set of locks. If the locking hierarchy is A before-B, module B must
install its fork handlers before module A. When the parent calls fork, the following
steps are taken, assuming that the child process runs before the parent.

1.

2.
3.
4

9.

The prepare fork handler from module A is called to acquire all module A’s locks.
The prepare fork handler from module B is called to acquire all module B’s locks.
A child process is created.

The child fork handler from module B is called to release all module B’s locks in
the child process.

The child fork handler from module A is called to release all module A’s locks in
the child process.

The fork function returns to the child.

The parent fork handler from module B is called to release all module B’s locks
in the parent process.

The parent fork handler from module A is called to release all module A’s locks
in the parent process.

The fork function returns to the parent.

If the fork handlers serve to clean up the lock state, what cleans up the state of
condition variables? On some implementations, condition variables might not need any
cleaning up. However, an implementation that uses a lock as part of the
implementation of condition variables will require cleaning up. The problem is that no
interface exists to allow us to do this. If the lock is embedded in the condition variable
data structure, then we can’t use condition variables after calling fork, because there is
no portable way to clean up its state. On the other hand, if an implementation uses a
global lock to protect all condition variable data structures in a process, then the
implementation itself can clean up the lock in the fork library routine. Application
programs shouldn’t rely on implementation details like this, however.

Example

The program in Figure 12.17 illustrates the use of pthread_atfork and fork handlers.

#include “"apue.h"
#include <pthread.h>

pthread mutex_t lockl
pthread _mutex_t lock2

void

PTHREAD MUTEX_ INITIALIZER;
PTHREAD MUTEX INITIALIZER;

i

prepare (void)

{

printf ("preparing locks...\n");
pthread mutex_lock (&lockl) ;
pthread mutex lock(&lock2);



Section 12.9

Threads and fork

419

void

parent (void)

{
printf ("parent unlocking locks
pthread mutex_unlock (&lockl) ;
pthread_mutex_unlock (&lock2) ;

}

void
child(void)

{

printf ("child unlocking locks..

pthread_mutex_unlock (&lockl) ;
pthread mutex_unlock (&lock2);

}

void *

thr_fn(void *arg)

{
printf ("thread started...\n");
pause () ;
return(0) ;

}
int
main{void)
{
int
pid_t
pthread t

err;
pid;
tid;

#if defined(BSD) || defined (MACOS)

cooA\n");

An');

printf ("pthread_atfork is unsupported\n") ;

#else
if ((err =
err_exit (err,
err =
if (err != 0)
err exit (err,
sleep(2);
printf ("parent about to fork..
if ((pid = fork()) < 0)
err_quit ("fork failed");
else if (pid == 0)

pthread_atfork (prepare, parent, child)) != 0)
vcan't install fork handlers");
pthread_create (&tid, NULL, thr_fn, 0);

"can‘t create thread");

'\nn) ;

/* child */

printf (*child returned from fork\n") ;

else /* parent */
printf ("parent returned from fork\n") ;
#endif
exit (0);

}

Figure 12.17 pthread_atfork example
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We define two mutexes, lockl and lock2. The prepare fork handler acquires them
both, the child fork handler releases them in the context of the child process, and the
parent fork handler releases them in the context of the parent process.
When we run this program, we get the following output:
$ ./a.out
thread started...
parent about to fork...
preparing locks...
child unlocking locks. ..
child returned from fork
parent unlocking locks...
parent returned from fork
As we can see, the prepare fork handler runs after fork is called, the child fork handler
runs before fork returns in the child, and the parent fork handler runs before fork
returns in the parent. C
12.10 Threads and I/O
We introduced the pread and pwrite functions in Section 3.11. These functions are
helpful in a multithreaded environment, because all threads in a process share the same
file descriptors.
Consider two threads reading from or writing to the same file descriptor at the
same time.
Thread A Thread B
lseek (fd, 300, SEEK_SET); lseek (fd, 700, SEEK_SET);
read(fd, bufl, 100); read (fd, buf2, 100);
If thread A executes the 1seek and then thread B calls 1seek before thread A calls
read, then both threads will end up reading the same record. Clearly, this isn’t what
was intended.
To solve this problem, we can use pread to make the setting of the offset and the
reading of the data one atomic operation.
Thread A Thread B
pread(fd, bufl, 100, 300); pread (fd, buf2, 100, 700);
Using pread, we can ensure that thread A reads the record at offset 300, whereas thread
B reads the record at offset 700. We can use pwrite to solve the problem of concurrent
threads writing to the same file.
12.11 Summary

Threads provide an alternate model for partitioning concurrent tasks in UNIX systems.
Threads promote sharing among separate threads of control, but present unique
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synchronization problems. In this chapter, we looked at how we can fine-tune our
threads and their synchronization primitives. We discussed reentrancy with threads.
We also looked at how threads interact with some of the process-oriented system calls.

Exercises

12.1

12.2

12.3

12.4

12.5

12.6
12.7

Run the program in Figure 12.17 on a Linux system, but redirect the output into a file.
Explain the results.

Implement putenv_r, a reentrant version of putenv. Make sure that your implementation
is async-signal safe as well as thread-safe.

Can you make the program in Figure 12.13 async-signal safe by blocking signals at the
beginning of the function and restoring the previous signal mask before returning? Explain.

Write a program to exercise the version of getenv from Figure 12.13. Compile and run the
program on FreeBSD. What happens? Explain.

Given that you can create multiple threads to perform different tasks within a program,
explain why you might still need to use £ ork.

Reimplement the program in Figure 10.29 to make it thread-safe without using nanosleep.

After calling fork, could we safely reinitialize a condition variable in the child process by
first destroying the condition variable with pthread_cond_destroy and then initializing
it with pthread_cond_init?
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Daemon Processes

Introduction

( Daemons are processes that live for a long time. They are often started when the system
is bootstrapped and terminate only when the system is shut down. Because they don’t
have a controlling terminal, we say that they run in the background;) UNIX systems
have numerous daemons that perform day-to-day activities.

In this chapter, we look at the process structure of daemons and how to write a
daemon. Since a daemon does not have a controlling terminal, we need to see how a
daemon can report error conditions when something goes wrong.

For a discussion of the historical background of the term daemon as it applies to computer
systems, see Raymond {1996].

Daemon Characteristics

Let's look at some common system daemons and how they relate to the concepts of
process groups, controlling terminals, and sessions that we described in Chapter 9. The
.ps(1) command prints the status of various processes in the system. There are a
multitude of options—consult your system’s manual for all the details. We'll execute

ps -axj

under BSD-based systems to see the information we need for this discussion. ‘The -a
option shows the status of processes owned by others, and -x shows processes that
don’t have a controlling terminal. The -j option displays the job-related information:
the session 1D, process group ID, controlling terminal, and terminal process group ID.,

423
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Under System V-based systems, a similar command is ps -efjc. (In an attempt to
improve security, some UNIX systems don’t allow us to use ps to look at any processes
other than our own.) The output from ps looks like

PPID PID PGID SID TTY TPGID UID COMMAND

0 1 0 0 2 -1 0 init
1 2 1 17 -1 o] [keventd]”
1 3 1 17 -1 o} [kapmd, -
0 5 1 17 -1 0 {kswapd] -
0 6 1 17 -1 0 [bdflush]
0 7 1 17 -1 o] {kupdated]
1 1009 1009 1009 ? -1 32 portmap
1 1048 1048 1048 ? -1 0 syslogd -m 0O
1 1335 1335 1335 ? -1 0 xinetd -pidfile /var/run/xinetd.pid
1 1403 1 1°? -1 0 {nfsd]
1 1405 1 17 -1 0 [lockd]
1405 1406 1 17 -1 0 [rpciod]
1 1853 1853 1853 ? -1 0 crond
2182 2182 2182 ? -1 o] /usr/sbin/cupsd

We have removed a few columns that don’t interest us, such as the accumulated CPU
time. {The column headings, in order, are the parent process ID, process ID, process
group ID, session ID, terminal name, terminal process group ID (the foreground process
group associated with the controlling terminal), user ID, and command string)

The system that this ps command was run on (Linux) supports the notion of a session ID.
which we mentioned with the setsid function in Section 9.5. The session 1D is simply the
process ID of the session leader. A BSD-based system, however, will print the address of the
session structure corresponding to the process group that the process belongs to
(Section 9.11).

The system processes you see will depend on the operating system implementation.
Anything with a parent process ID of 0 is usually a kernel process started as part of the
system bootstrap procedure. (An exception to this is init, since it is a user-level
command started by the kernel at boot time.) (Kernel processes are special and
generally exist for the entire lifetime of the system. They run with superuser privileges
and have no control]mg terminal and no command line.

Process 1 is usually init, as we described in Section 8.2. It is a system daemon
responsible for, among other thmgs, starting system services specific to various run
levels. These services are usually implemented with the help of their own daemons.

On Linux, /the keventd daemon provides process context for running scheduled
functions in the kernel. The kapmd daemon provides support for the advanced power
management features available with various computer systems. The kswapd daemon
is also known as the pageout daemon. It supports the virtual memory subsystem by
writing dirty pages to disk slowly over time, so the pages can be reclaimed. |

The Linux kernel flushes cached data to disk using two additional daemons:
bdflush and kupdated. The bdflush daemon flushes dirty buffers from the buffer
cache back to disk when available memory reaches a low-water mark. The kupdated
daemon flushes dirty pages back to disk at regular intervals to decrease data loss in the
event of a system failur9
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P

_The portmapper daemon, portmap, provides the service of mapping RPC (Remote
Procedure Call) program numbers to network port numbers. The syslogd daemon is
available to any program to log system messages for an operatdr The messages may be
printed on a console device and also written to a file. (We desélibe the syslog facility
in Section 13.4.)

We talked about the inetd daemon (xinetd) in Section 9.3. It listens on the
system’s network interfaces for incoming requests for various network servers. The
nfsd, lockd, and rpciod daemons provide support for the Network File System
(NFS).

The cron daemon (crond) executes commands at specified dates and times.
Numerous system administration tasks are handled by having programs executed
regularly by cron. The cupsd daemon is a print spooler; it handles print requests on
the system.

Note that most of the daemons run with superuser privilege (a user ID of 0). None
of the daemons has a controlling terminal: the terminal name is set to a question mark,
and the terminal foreground process group is —1. The kernel daemons are started
without a controlling terminal. The lack of a controlling terminal in the user-level
daemons is probably the result of the daemons having called setsid. All the
user-level daemons are process group leaders and session leaders and are the only
processes in their process group and session. Finally, note that the parent of most of
these daemons is the init process.

Coding Rules

Some basic rules to coding a daemon prevent unwanted interactions from happening,.

We state these rules and then show A function, daemoni ze, that implements them.

1. The first thing to do is(call umask to set the file mode creation mask to 0. The

file mode creation mask that’s inherited could be set to deny certain

permissions. If the daemon process is going to create files, it may want to set

specific permission@ For example, if it specifically creates files with group-read

and group-write enabled, a file mode creation mask that turns off either of these
permissions would undo its efforts.

2. (Call fork and have the parent exit. This does several things. First, if the
daemon was started as a simple shell command, having the parent terminate
makes the shell think that the command is done. Second, the child inherits the
process group 1D of the parent but gets a new process ID, so we're guaranteed
that the child is not a process group leader. This is a prerequisite for the call to

setsithat is done next.

3. (Call setsid to create a new session. The three steps listed in Section 9.5 occur.
The process (a) becomes a session leader of a new session, (b) becomes the
process group leader of a new process group, and (c) has no controlling
terminal.
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Example

Under System V-based systems, some people recommend calling fork again at this
point and having the parent terminate. The second child continues as the daemon. This
guarantees that the daemon is not a session leader, which prevents it from acquiring a
controlling terminal under the System V rules (Section 9.6). Alternatively, to avoid
acquiring a controlling terminal, be sure to specify 0O_NOCTTY whenever opening a
terminal device.

4. Change the current working directory to the root directory. The current

working directory inherited from the parent could be on a mounted file system.
Since daemons normally exist until the system is rebooted, if the daemon stays
on a mounted file system, that file system cannot be unmounted.

Alternatively, some daemons might change the current working directory to
some specific location, where they will do all their wor@ For example, line
printer spooling daemons often change to their spool directfory.

5. / Unneeded file descriptors should be closed. This prevents the daemon from
holding open any descriptors that it may have inherited from its parent (which

could be a shell or some other process). We can use our open_max function
(Figure 2.16) or the getrlimit function (Section 7.11) to determine the highest
descriptor and close all descriptors up to that value.

Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any
library routines that try to read from standard input or write to standard output
or standard error will have no effect. Since the daemon is not associated with a
terminal device, there is nowhere for output to be displayed; nor is there
anywhere to receive input from an interactive user. Even if the daemon was
started from an interactive session, the daemon runs in the background, and the
login session can terminate without affecting the daemon. If other users log in
on the same terminal device, we wouldn’t want output from the daemon
showing up on the terminal, and the users wouldn’t expect their input to be
read by the daemorﬁ

Figure 13.1 shows a function that can be called from a program that wants to initialize
itself as a daemon.

#include "apue.h"
#include <syslog.h>
#include <fentl.h>
#include <sys/resource.h>

void

daemonize (const char *cmd)

{

int i, fdo, fdi, f4z2;
pid t pid;
struct rlimit rl;

struct sigaction sa;
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/*
*+ Clear file creation mask.
*/

umask (0) ;

/* i

* Get maximum number of file descriptors.

*/

if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
err_quit("%s: can’t get file limit", cmd);

/*
* Become a session leader to lose controlling TTY.
*/
if ((pid = fork()) < 0)
err_quit("%s: can’t fork", cmd) ;

else if (pid != 0) /* parent */
exit (0);
setsid () ;
/*
* Ensure future opens won’t allocate controlling TTYs.
*/

sa.sa_handler = SIG_IGN;
sigemptyset (&sa.sa_mask) ;
sa.sa_flags = 0;
if (sigaction(SIGHUP, &sa, NULL) < 0)
err quit("%s: can’'t ignore SIGHUP");
if ((pid = fork()) < 0)
err_quit("%s: can’'t fork", cmd) ;
else if (pid != 0) /* parent */
exit (0);

/*
* Change the current working directory to the root so
* we won't prevent file systems from being unmounted.
*/
if (chdir("/") < 0)

err_quit("%s: can’t change directory to /")

/*
* Close all open file descriptors.
*/
if (rl.rlim max == RLIM_INFINITY)
rl.rlim_max = 1024;
for (i = 0; i < rl.rlim_max; i++)
close(i);

/*
+ Attach file descriptors 0, 1, and 2 to /dev/null.
*/
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fd0 = open("/dev/null", O RDWR) ;
fdl = dup(0);
fd2 = dup(0);
/*
* Initialize the log file.
*/
openlog(cmd, LOG_CONS, LOG_DAEMON) ;
if (fdo t= 0 || £d1 != 1 || £d42 != 2) {
syslog (LOG_ERR, "unexpected file descriptors %d %4 %d",
fdo, f£di, fd2);
exit (1) ;
}
}
Figure 13.1 Initialize a daemon process
If the daemonize function is called from a main program that then goes to sleep, we
can check the status of the daemon with the ps command:
$ ./a.out
$ ps -axj
PPID PID PGID SID TTY TPGID UID  COMMAND
1 3346 3345 3345 ? -1 501 ./a.out
$ ps -axj | grep 3345
1 3346 3345 3345 ? -1 501 ./a.out
We can also use ps to verify that no active process exists with ID 3345. This means that
our@aemon is in an orphaned process group (Section 9.10) and is not a session leader
and thus has no chance of allocating a controlling terminal. This is a result of
performing the second fork in the daemonize functlorb We can see that our daemon
has been initialized correctly. [
13.4 Error Logging

One problem a daemon has is how to handle error messages. (It can’t simply write to
standard error, since it shouldn’t have a controlling terminal. We don’t want all the
daemons writing to the console device, since on many workstations, the console device
runs a windowing system. We also don’t want each daemon writing its own error
messages into a separate file. It would be a headache for anyone administering the
system to keep up with which daemon writes to which log file and to check these files
on a regular basis. A central daemon error-logging facility is required/

The BSD syslog facility was developed at Berkeley and used widely in 4.2BSD. Most systems
derived from BSD support syslog.

Until SVR4, System V never had a central daemon logging facility.

The syslog function is included as an XSI extension in the Single UNIX Specification.
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The BSD syslog facility has been widely used since 4.2BSD. Most daemons use
this facility. Figure 13.2 illustrates its structure.

written to file or
to logged-in users or
sent to another host

( user
| process
| I
syslog

it Bl

1 1
| |
UDP
I i
' /dev/log port 514 /dev/klog \
: UNIX domain Internet domain A :
i datagram socket datagram socket log |
i i
1 kernel |
! routines !
i i
' I
kermel |- J
TCP/IP network

Figure 13.2 The BSD syslog facility

There are three ways to generate log messages:

1.

Kernel routines can call the 1og function. These messages can be read by any
user process that opens and reads the /dev/klog device.) We won't describe
this function any further, since we’re not interested in writing kernel routines.

Most user processes (daemons) call the syslog(3) function to generate log
messages., We describe its calling sequence later. (This causes the message to be
sent to tHe UNIX domain datagram socket /dev/log.

A user process on this host, or on some other host that is connected to this host
by a TCP/IP network, can send log messages to UDP port 514. Note that the
syslog function never generates these UDP datagrams: they require explicit
network programming by the process generating the log message..

Refer to Stevens, Fenner, and Rudoff [2004] for details on UNIX domain sockets and
UDP sockets.

Normally/the syslogd daemon reads all three forms of log messages. On start-up,
this daemon reads a configuration file, usually /etc/syslog.conf, which determines
where different classes of messages are to be sent. For example, urgent messages can be
sent to the system administrator (if logged in) and printed on the console, whereas

warnings may be logged to a file)
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Our interface to this facility is through the syslog function.

#include <syslog.h>

void openlog(const char *ident, int option, int facility) ;
void syslog{int priority, const char *format, ...);
void closelog(void) ;

int setlogmask (int maskpri) ;

Returns: previous log priority mask value

CCalling openlog is optional. If it's not called, the first time syslog is called, openlog
is called automatically. Calling closelog is also optional—it just closes the descriptor
that was being used to communicate with the syslogd daemon.

Calling openlog lets us specify an ident that is added to each log message. This is
normally the name of the program (cron, inetd, etc.). The option argument is a
bitmask specifying various options; Figure 13.3 describes the available options,
including a bullet in the XSI column if the option is included in the openlog definition
in the Single UNIX Specification.

option X851 Description

LOG_CONS . If the log message can’t be sent to syslogd via the UNIX domain datagram,
the message is written to the console instead.

LOG_NDELAY . Open the UNIX domain datagram socket to the syslogd daemon
immediately; don’t wait until the first message is logged. Normally, the
socket is not opened until the first message is logged.

LOG_NOWAIT . Do not wait for child processes that might have been created in the process of |
logging the message. This prevents conflicts with applications that catch |
SIGCHLD, since the application might have retrieved the child’s status by
the time that syslog calls wait.

LbG_ODELAY . Delay the open of the connection to the syslogd daemon until the first
message is logged.

LOG_PERROR Write the log message to standard error in addition to sending it to syslogd.
(Unavailable on Solaris.)

LOG_PID . Log the process ID with each message. This is intended for daemons that
fork a child process to handle different requests (as compared to
daemons, such as syslogd, that never call fork).

Figure 13.3 The option argument for openlog

The facility argument for openlog is taken from Figure 13.4. Note that the Single
UNIX Specification defines only a subset of the facility codes typically available on a
given platform. (The reason for the facility argument is to let the configuration file
specify that messages from different facilities are to be handled differently. If we don’t
call openlog, or if we call it with a facility of 0, we can still specify the facility as part of
the priority argument to sys1log)
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if ) facility ; X8I ; Description - iﬁ»jﬂ
F—L(SGiAUTH ‘ ‘! authorization programs: login, su, getty, ... i . |
‘ LOG AUTHPRIV ’ ‘ same as LOG_AUTH, but logged to file with restricted permissions ‘
- LOG_CRON i - cronand at
| LOG_DAREMON ‘ ‘ system daemons: inetd, routed, ... !
| LOG_FTP | | the FTP daemon (£tpd) \
3‘ LOG_KERN ‘ | messages generated by the kernel i
! LOG_LOCALO I e ¢ reserved for local use
‘ LOG_LOCAL1 ‘ . ‘ reserved for local use \
| LOG LOCAL2 | V‘ reserved for Jocal use ‘}
! LOG_LOCAL3 . e ! reserved for local use
| LOG_LOCAL4 | o | reserved for local use !
| LOG_LOCALS P | reserved for local use i
LOG_LOCALE 7 * | reserved for local use
! LOG LOCAL7 ] ’ reserved for local use
‘ LOG LPR i 1 line printer system: 1pd, 1pc, ... i
| LOG_MAIL i | the mail system 1
: LOG_NEWS : | the Usenet network news system
‘ LOG_SYSLOG ‘ I the syslogd daemon itself l
| LOG_USER 1 . ‘ messages from other user processes (default) ‘l
LOG_UUCP | | the UUCP system i

_ | thebLAToyste . o S

Figure 13.4 The facility argument for openlog

{—Tﬁmﬁ?’ﬁﬁmpﬁ)nﬁ——— ——————— |
= e —— *“—‘_J

i LOG_EMERG emergency (system is unusable) (highest priority) ;
| Lo ALERT | condition that must be fixed immediately i
i LOG_CRIT critical condition (e.g., hard device error} E
|

| LOG_WARNING | warning condition [
| LoG NOTICE ‘

\

normal, but significant condition
| LOG_INFO informational message

| LOG_DEBUG | debug message (lowest priority)

|
|
(‘ LOG_ERR '\ error condition

Figure 13.5 The syslog levels (ordered)

(We call syslog to generate a log message. The priority argument is a combination
of the facility shown in Figure 13.4 and a level, shown in Figure 13.5. These levels are
ordered by priority, from highest to lowest.

The format argument and any remaining arguments are passed to the vsprintf
function for formatting. Any occurrence of the two characters %m in the format are first
replaced with the error message string (strerror) corresponding to the value of
errno.

The setlogmask function can be used to set the log priority mask for the process.
This function returns the previous mask. When the log priority mask is set, messages
are not logged unless their priority is set in the log priority mask. Note that attempts to
set the log priority mask to 0 will have no effect.
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The logger(l) program is also provided by many systems as a way to send log
messages to the syslog facility. Some implementations allow optional arguments to
this program, specifying the facility, level, and ident, although the Single UNIX
Specification doesn’t define any options. The logger command is intended for a shell
script running noninteractively that needs to generate log messages.

Example

13.5

In a (hypothetical) line printer spooler daemon, you might encounter the sequence
openlog("lpd", LOG_PID, LOG LPR);
syslog (LOG_ERR, "open error for %s: %m", filename);

The first call sets the ident string to the program name, specifies that the process ID
should always be printed, and sets the default facility to the line printer system. The call
to syslog specifies an error condition and a message string. If we had not called
openlog, the second call could have been

syslog (LOG_ERR | LOG LPR, "open error for %s: %m", filename);

Here, we specify the priority argument as a combination of a level and a facility. o

In addition to syslog, many platforms provide a variant that handles variable
argument lists.

#include <syslog.hs>
#include <stdarg.h>

void vsyslog(int priority, const char *format, va list arg) ;

All four platforms described in this book provide vsyslog, but it is not included in the Single
UNIX Specification.

Most syslogd implementations will queue messages for a short time. If a
‘duplicate message arrives during this time, the syslog daemon will not write it to the
log. Instead, the daemon will print out a message similar to “last message repeated N
times.”

Single-Instance Daemons

Some daemons are implemented so that only a single copy of the daemon should be
running at a time for proper operation. The daemon might need exclusive access to a
device, for example. In the case of the cron daemon, if multiple instances were
running, each copy might try to start a single scheduled operation, resulting in
duplicate operations and probably an error.

If the daemon needs to access a device, the device driver will sometimes prevent
multiple opens of the corresponding device node in /dev. This restricts us to one copy
of the daemon running at a time. If no such device is available, however, we need to do
the work ourselves.
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The file- and record-locking mechanism provides the basis for one way to ensure
that only one copy of a daemon is running. (We discuss file and record locking in
Section 14.3.) If each daemon creates a file and places a write lock on the entire file, only
one such write lock will be allowed to be created. Successive attempts to create write
locks will fail, serving as an indication to successive copies of the daemon that another
instance is already running.

File and record locking provides a convenient mutual-exclusion mechanism. If the
daemon obtains a write-lock on an entire file, the lock will be removed automatically if
the daemon exifs) This simplifies recovery, removing the need for us to clean up from
the previous instance of the daemon.

Example

The function shown in Figure 13.6 illustrates the use of file and record locking to ensure
that only one copy of a daemon is running.

#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <syslog.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <sys/stat.h>

#define LOCKFILE v /var/run/daemon.pid"
#define LOCKMODE (S_IRUSR|S_IWUSR | S_IRGRP|S_IROTH)

extern int lockfile(int);

int
already_running(void)
{

int £d;

char buf [16];

£4 = open (LOCKFILE, O_RDWR|O_CREAT, LOCKMODE) ;

if (fa < 0) {
syslog (LOG_ERR, "can’t open $s: %s", LOCKFILE, strerror (errno}) ;
exit (1) ;

if (lockfile(fd) < 0) {

if (errno == EACCES || errno == EAGAIN) {
close (£d);
return(l) ;

syslog (LOG_ERR, "can’'t lock %s: %s", LOCKFILE, strerror (errno));
exit (1});

}

ftruncate (f£d, 0);
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sprintf (buf, "%$1d", (long)getpid());
write (fd, buf, strlen(buf)+1);
return(0) ;

Figure 13.6 Ensure that only one copy of a daemon is running

' Each copy of the daemon will try to create a file and write its process ID in it. This
will allow administrators to identify the process easily. If the file is already locked, the
lockfile function will fail with errno set to EACCES or EAGAIN, so we return 1,
indicating that the daemon is already running. Otherwise, we truncate the file, write
our process ID to it, and return 0.

We need to truncate the file, because the previous instance of the daemon might
have had a process ID larger than ours, with a larger string ]engtl}) For example, if the
previous instance of the daemon was process ID 12345, and the new instance is process
ID 9999, when we write the process ID to the file, we will be left with 99995 in the file.
Truncating the file prevents data from the previous daemon appearing as if it applies to
the current daemon. m

Daemon Conventions

Several common conventions are followed by daemons in the UNIX System.

{f,O If the daemon uses a lock file, the file is usually stored in /var/run. Note,

~ however, that the daemon might need superuser permissions to create a file
here. The name of the file is usually name.pid, where name is the name of the
daemon or the service. For example, the name of the cron daemon'’s lock file is
/var/run/crond.pid.

* If the daemon supports configuration options, they are usually stored in /etc.
The configuration file is named name.conf, where name is the name of the
daemon or the name of the service. For example, the configuration for the
syslogd daemonis /etc/syslog.conft.

* Daemons can be started from the command line, but they are usually started
from one of the system initialization scripts (/etc/rc* or /etc/init. da/*). If
the daemon should be restarted automatically when it exits, we can arrange for
init to restart it if we include a respawn entry for it in /etc/inittab.

* If a daemon has a configuration file, the daemon reads it when it starts, but
usually won’t look at it again. If an administrator changes the configuration, the
daemon would need to be stopped and restarted to account for the configuration
changes. To avoid this, some daemons will catch SIGHUP and reread their
configuration files when they receive the signal. Since they aren’t associated
with terminals and are either session leaders without controlling terminals or
members of orphaned process groups, daemons have no reason to expect to
receive SIGHUP. Thus, they can safely reuse it.”}

J/
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Example

The program shown in Figure 13.7 shows one way a daemon can reread its
configuration file. The program uses sigwait and multiple threads, as discussed in

Section 12.8.

#include "apue.h"
#include <pthread.h>
#include <syslog.h>

sigset_t mask;

extern int already_running(void);

void
reread (void)
{
J* ... %/
}
void *
thr_fn(void *arg)
{
int err, signo;
for (;:) {
err = sigwait (&mask, &signo);
if (err 1= 0) {
syslog (LOG_ERR, "sigwait failed");
exit(1);
}

switch (signo) {

case SIGHUP:
syslog (LOG_INFO, "Re-reading configuration file");
reread () ;
break;

case SIGTERM:
syslog (LOG_INFO, "got SIGTERM; exiting");

exit (0);
default:
syslog (LOG_INFO, "unexpected signal $d\n", signo);
}
}
return(0) ;
}
int

main (int argc, char *argv(])
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int err;
pthread_t tid;
char *omd ;
struct sigaction sa;
if ((cmd = strrchr(argvi(0]l, ’'/’)) == NULL)
cmd = argv|[0];
else
cmd++;
/*
* Become a daemon.
*/

daemonize (cmd) ;

/*
* Make sure only one copy of the daemon is running.

*/

if (already running()) {
syslog (LOG_ERR, "daemon already running") ;
exit (1) ;
}
/i—
* Restore SIGHUP default and block all signals.
*/

sa.sa_handler = SIG DFL;

sigemptyset (&sa.sa_mask) ;

sa.sa_flags = 0;

if (sigaction(SIGHUP, &sa, NULL) < 0)
err_quit("%s: can’t restore SIGHUP default") ;

sigfillset (&mask) ;

if ((err = pthread_sigmask (SIG BLOCK, &mask, NULL)) != 0)
err_exit (err, "SIG BLOCK error");

/*
* Create a thread to handle SIGHUP and SIGTERM.
*/
err = pthread_create(&tid, NULL, thr fn, 0);
if (err != 0)
err_exit (err, "can’t create thread");
/*
* Proceed with the rest of the daemon.
*/
VAN ¥
exit (0) ;

Figure 13.7 Daemon rereading configuration files
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We call daemonize from Figure 13.1 to initialize the daemon. When it returns, we
call already running from Figure 13.6 to ensure that only one copy of the daemon is
running. At this point, SIGHUP is still ignored, so we need to reset the disposition to
the default behavior; otherwise, the thread calling sigwait may never see the signal.

We block all signals, as is recommended for multithreaded programs, and create a
thread to handle signals. The thread’s only job is to wait for SIGHUP and SIGTERM.
When it receives SIGHUP, the thread calls reread to reread its configuration file. When
it receives SIGTERM, the thread logs a message and exits.

Recall from Figure 10.1 that the default action for SIGHUP and SIGTERM is to
terminate the process. Because we block these signals, the daemon will not die when
one of them is sent to the process. Instead, the thread calling sigwait will return with
an indication that the signal has been received. 0

Example

As noted in Section 12.8, Linux threads behave differently with respect to signals.
Because of this, identifying the proper process to signal in Figure 13.7 will be difficult.
In addition, we aren’t guaranteed that the daemon will react as we expect, because of
the implementation differences.

The program in Figure 13.8 shows how a daemon can catch SIGHUP and reread its
configuration file without using multiple threads.

#include "apue.h"
#include <syslog.h>
#include <errno.h>

extern int lockfile(int);
extern int already running(void);

void
reread (void)

{
}

void
sigterm(int signo)

{

/* o

syslog (LOG_INFO, "got SIGTERM; exiting");
exit (0);

}

void

sighup (int signo)

{
syslog (LOG_INFO, "Re-reading configuration file");
reread () ;
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int

main(int argc, char *argv[])
char *cmd;
struct sigaction sa;

if ((emd = strrchr(argv{0}, ‘/’)) == NULL)
cmd = argv[0];

else
cmd++;

/*
* Become a daemon.
*/

daemonize (cmd) ;

/*
* Make sure only one copy of the daemon is running.
*/
if (already_running()) {
syslog (LOG_ERR, "daemon already running") ;
exit (1) ;

}
/*

* Handle signals of interest.
*/
sa.sa_handler = sigterm;
sigemptyset (&sa.sa_mask) ;
sigaddset (&sa.sa_mask, SIGHUP);
sa.sa_flags = 0;
if (sigaction(SIGTERM, &sa, NULL) < 0) {

syslog (LOG_ERR, "can’t catch SIGTERM: %s", strerror (errno));

exit (1);
}
sa.sa_handler = sighup;
sigemptyset (&sa.sa_mask) ;
sigaddset (&sa.sa_mask, SIGTERM) ;
sa.sa_flags = 0; )
if (sigaction(SIGHUP, &sa, NULL) < 0) {

syslog (LOG_ERR, "can’'t catch SIGHUP: %s", strerror (errno));

exit (1) ;

}

/*
* Proceed with the rest of the daemon.
*/

VAN

exit (0) ;

Figure 13.8 Alternate implementation of daemon rereading configuration files
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13.7

13.8

After initializing the daemon, we install signal handlers for STGHUP and SIGTERM. We
can either place the reread logic in the signal handler or just set a flag in the handler and
have the main thread of the daemon do all the work instead. O

Client—-Server Model

A common use for a daemon process is as a server process. Indeed, in Figure 13.2, we
can call the syslogd process a server that has messages sent to it by user processes
(clients) using a UNIX domain datagram socket.

In general, a server is a process that waits for a client to contact it, requesting some
type of service. Tn Figure 13.2, the service being provided by the syslogd server is the
logging of an error message.

In Figure 13.2, the communication between the client and the server is one-way.
The client sends its service request to the server; the server sends nothing back to the
client.; In the upcoming chapters, we’ll see numerous examples of two-way
comimunication between a client and a server. The client sends a request to the server,
and the server sends a reply back to the client.

Summary

Daemon processes are running all the time on most UNIX systems. Initializing our own
process to run as a daemon takes some care and an understanding of the process
relationships that we described in Chapter 9. In this chapter, we developed a function
that can be called by a daemon process to initialize itself correctly.

We also discussed the ways a daemon can log error messages, since a daemon
normally doesn’t have a controlling terminal. We discussed several conventions that
daemons follow on most UNIX systems and showed examples of how to implement

some of these conventions.

Exercises

13.1 As we might guess from Figure 13.2, when the syslog facility is initialized, either by
calling openlog directly or on the first call to syslog, the special device file for the UNIX
domain datagram socket, /dev/1og, has to be opened. What happens if the user process
(the daemon) calls chroot before calling openlog?

132 List all the daemons active on your system, and identify the function of each one.

13.3 Write a program that calls the daemonize function in Figure 13.1. After calling this
function, call get login (Section 8.15) to see whether the process has a login name now that
it has become a daemon. Print the results to a file.
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Advanced I/0

Introduction

This chapter covers numerous topics and functions that we lump under the term
advanced 1/0 : nonblocking /0O, record locking, System V STREAMS, 1/0O multiplexing
(the select and poll functions), the readv and writev functions, and
memory-mapped [/O (mmap). We need to cover these topics before describing
interprocess communication in Chapter 15, Chapter 17, and many of the examples in
later chapters.

Nonblocking /O

In Section 10.5, we said that the system calls are divided into two categories: the “slow”
ones and all the others. The slow system calls are those that can block forever. They
include

e Reads that can block the caller forever if data isn’t present with certain file types
(pipes, terminal devices, and network devices)

e Writes that can block the caller forever if the data can’t be accepted immediately
by these same file types (no room in the pipe, network flow control, etc.)

e Opens that block until some condition occurs on certain file types (such as an
open of a terminal device that waits until an attached modem answers the
phone, or an open of a FIFO for writing-only when no other process has the
FIFO open for reading)

e Reads and writes of files that have mandatory record locking enabled

441
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* Certain ioct1 operations

* Some of the interprocess communication functions (Chapter 15)

We also said that system calls related to disk I/O are not considered slow, even though
the read or write of a disk file can block the caller temporarily.

Nonblocking 1/0 lets us issue an 1/O operation, such as an open, read, or write,

and not have it block forever. If the operation cannot be completed, the call returns
immediately with an error noting that the operation would have blocked.

Example

There are two ways to specify nonblocking 1/O for a given descriptor.

1. If we call open to get the descriptor, we can specify the O NONBLOCK flag
(Section 3.3).

2. For a descriptor that is already open, we call fcnt1 to turn on the O NONBLOCK
file status flag (Section 3.14). Figure 3.11 shows a function that we can call to
turn on any of the file status flags for a descriptor.

Earlier versions of System V used the flag O_NDELAY to specify nonblocking mode. These
versions of System V returned a value of 0 from the read function if there wasn't any data to
be read. Since this use of a return value of 0 overlapped with the normal UNIX System
convention of 0 meaning the end of file, POSIX.1 chose to provide a nonblocking flag with a
different name and different semantics. Indeed, with these older versions of System V, when
we get a return of 0 from read, we don’t know whether the call would have blocked or
whether the end of file was encountered. We'll see that POSIX.1 requires that read return -1
with errno set to EAGAIN if there is no data to read from a nonblocking descriptor. Some
platforms derived from System V support both the older 0 NDELAY and the POSIX.1
O_NONBLOCK, but in this text, we’ll use only the POSIX.1 feature. The older O_NDELAY is for
backward compatibility and should not be used in new applications.

4.3BSD provided the FNDELAY flag for fcntl, and its semantics were slightly different.
Instead of affecting only the file status flags for the descriptor, the flags for either the terminal
device or the socket were also changed to be nonblocking, affecting all users of the terminal or
socket, not only the users sharing the same file table entry (4.3BSD nonblocking I/0 worked
only on terminals and sockets). Also, 4.3BSD returned EWOULDBLOCK if an operation on a
nonblocking descriptor could not complete without blocking. Today, BSD-based systems
provide the POSIX.1 O_NONBLOCK flag and define ENOULDBLOCK to be the same as EAGATN.
These systems provide nonblocking semantics consistent with other POSIX-compatible
systems: changes in file status flags affect all users of the same file table entry, but are
independent of accesses to the same device through other file table entries. (Refer to Figures
3.6 and 3.8.)

Let’s look at an example of nonblocking I/O. The program in Figure 14.1 reads up to
500,000 bytes from the standard input and attempts to write it to the standard output.
The standard output is first set nonblocking. The output is in a loop, with the results of
each write being printed on the standard error. The function c1r £1 is similar to the
function set_£1 that we showed in Figure 3.11. This new function simply clears one or
more of the flag bits.
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#include "apue.h"
#include <errno.h>
#include <fcntl.h>

char buf [500000] ;

int

main (void)

{

int ntowrite, nwrite;
char *ptr;

ntowrite = read(STDIN FILENO, buf, sizeof (buf));
fprintf (stderr, "read %d bytes\n", ntowrite) ;

set#fl(STDOUT_FILENO, O_NONBLOCK); /* set nonblocking */

ptr = buf;
while (ntowrite > 0) {
errno = 0;
nwrite = write (STDOUT FILENO, ptr, ntowrite) ;
fprintf (stderr, "nwrite = $d, errno = %d\n", nwrite, errno);

1if (nwrite > 0) {

ptr += nwrite;
ntowrite -= nwrite;

}
clr £1(STDOUT_ FILENO, O_NONBLOCK) ; /* clear nonblocking */

exit (0);

Figure 14.1 Large nonblocking write

If the standard output is a regular file, we expect the write to be executed once:

$ 1s -1 /etc/termcap print file size
-yw-r--r-- 1 root 702559 Feb 23 2002 /etc/termcap

$ ./a.out < /etc/termcap > temp.file try a regular file first
read 500000 bytes

nwrite = 500000, errno = 0 a single write

$ 1s -1 temp.file verify size of output file
-rw-rw-r-- 1 sar 500000 Jul 8 04:19 temp.file

But if the standard output is a terminal, we expect the write to return a partial count
sometimes and an error at other times. This is what we see:
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$ ./a.out < /etc/termcap 2>stderr.out output to terminal
lots of output to terminal ...

$ cat stderr.out

read 500000 bytes

nwrite = 216041, errno = 0

nwrite = -1, errnc = 11 1,497 of these errors

nwrite = 16015, errno = 0

nwrite = -1, errno = 11 1,856 of these errors

nwrite = 32081, errno = 0

nwrite = -1, errno = 11 1,654 of these errors

nwrite = 48002, errno = 0

nwrite = -1, errno = 11 1,460 of these errors

and soon ...

nwrite = 7949, errno = 0
On this system, the errno of 11 is EAGAIN. The amount of data accepted by the
terminal driver varies from system to system. The results will also vary depending on
how you are logged in to the system: on the system console, on a hardwired terminal,
on network connection using a pseudo terminal. If you are running a windowing
system on your terminal, you are also going through a pseudo-terminal device. o

In this example, the program issues thousands of write calls, even though only
between 10 and 20 are needed to output the data. The rest just return an error. This
type of loop, called polling, is a waste of CPU time on a multiuser system. In
Section 14.5, we'll see that I/O multiplexing with a nonblocking descriptor is a more
efficient way to do this.

Sometimes, we can avoid using nonblocking 1/0 by designing our applications to
use multiple threads (see Chapter 11). We can allow individual threads to block in 1/0
calls if we can continue to make progress in other threads. This can sometimes simplify
the design, as we shall see in Chapter 21; sometimes, however, the overhead of
synchronization can add more complexity than is saved from using threads.

14.3 Record Locking

What happens when two people edit the same file at the same time? In most UNIX
systems, the final state of the file corresponds to the last process that wrote the file. In
some applications, however, such as a database system, a process needs to be certain
that it alone is writing to a file. To provide this capability for processes that need it,
commercial UNIX systems provide record locking. (In Chapter 20, we develop a

~ database library that uses record locking.)

Record locking is the term normally used to describe the ability of a process to
prevent other processes from modifying a region of a file while the first process is
reading or modifying that portion of the file. Under the UNIX System, the adjective
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“record” is a misnomer, since the UNIX kernel does not have a notion of records in a
file. A better term is byte-range locking, since it is a range of a file (possibly the entire file)
that is locked. )

History

One of the criticisms of early UNIX systems was that they couldn’t be used to run
database systems, because there was no support for locking portions of files. As UNIX
systems found their way into business computing environments, various groups added
support record locking (differently, of course).

Early Berkeley releases supported only the £lock function. This function locks
only entire files, not regions of a file.

Record locking was added to System V Release 3 through the fcntl function. The
lockf function was built on top of this, providing a simplified interface. These
functions allowed callers to lock arbitrary byte ranges in a file, from the entire file down
to a single byte within the file.

POSIX.1 chose to standardize on the fcnt1 approach. Figure 14.2 shows the forms
of record locking provided by various systems. Note that the Single UNIX Specification
includes lockf in the XSI extension.

““Guetem | Advisory | Mandatory | fentl | lockf | £lock |
‘,’f”:;;‘ Sep——— + — = 9 — t ”’7"i'h;_f’;“t;'_:' 7_’_#
 SUS ‘ . : | e i XSI ¢ ;
U SO SR B S el -
‘ FreeBSD 3.2.1 | . i i . . . 1
! Linux 2.4.22 \ . i . e e e
| MacOSX103 | ¢ | e T A
i Solaris 9 i . ‘, . . i . | .

Figure 14.2 Forms of record locking supported by various UNIX systems

We describe the difference between advisory locking and mandatory locking later in
this section. In this text, we describe only the POSIX.1 £cnt1 locking.

Record locking was originally added to Version 7 in 1980 by John Bass. The system call entry
into the kernel was a function named locking. This function provided mandatory record
locking and propagated through many versions of System 1Il. Xenix systems picked up this
function, and some Intel-based System V derivatives, such as OpenServer 5, still support itin a
Xenix-compatibility library.

fentl Record Locking

Let's repeat the prototype for the fcntl function from Section 3.14.

I #include <fcntl.h>

| |
! int fentl(int filedes, int emd, ... /* struct flock *flockptr */ ); ]
| |

Returns: depends on cmd if OK (see following), -1 on error
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For record locking, cmd is F_GETLK, F_SETLK, or F_SETLKW. The third argument
(which we’ll call flockptr) is a pointer to an f1ock structure.

struct flock ({

short 1 _type; /* F_RDLCK, F_WRLCK, or F_UNLCK */

off t 1 start; /* offset in bytes, relative to 1_whence */
short 1_whence; /* SEEK_SET, SEEK CUR, or SEEK _END */
off t 1 len; /* length, in bytes; 0 means lock to EQF */
pid_t 1_pid; /* returned with F_GETLK */

}i

This structure describes

The type of lock desired: F_RDLCK (a shared read lock), F_WRLCK (an exclusive
write lock), or F_UNLCK (unlocking a region)

The starting byte offset of the region being locked or unlocked (1_start and
1 whence)

The size of the region in bytes (1_len)

The ID (1_pid) of the process holding the lock that can block the current
process (returned by F_GETLK only)

There are numerous rules about the specification of the region to be locked or unlocked.

The two elements that specify the starting offset of the region are similar to the
last two arguments of the 1seek function (Section 3.6). Indeed, the 1_whence
member is specified as SEEK_SET, SEEK_CUR, or SEEK_END.

Locks can start and extend beyond the current end of file, but cannot start or
extend before the beginning of the file.

If 1_lenis 0, it means that the lock extends to the largest possible offset of the
file. This allows us to lock a region starting anywhere in the file, up through and
including any data that is appended to the file. (We don’t have to try to guess
how many bytes might be appended to the file.)

To lock the entire file, we set 1_start and 1_whence to point to the beginning
of the file and specify a length (1_1len) of 0. (There are several ways to specify
the beginning of the file, but most applications specify 1_start as 0 and
1_whence as SEEK_SET.)

We mentioned two types of locks: a shared read lock (1_type of F_RDLCK) and an
exclusive write lock (F_WRLCK). The basic rule is that any number of processes can
have a shared read lock on a given byte, but only one process can have an exclusive
write lock on a given byte. Furthermore, if there are one or more read locks on a byte,
there can’t be any write locks on that byte; if there is an exclusive write lock on a byte,
there can’t be any read locks on that byte. We show this compatibility rule in
Figure 14.3.
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Request for

read lock | write lock '
ﬁ) locks OK OK
. one or more OK denied
Region currently has read locks
one write denied denied
lock

Figure 14.3 Compatibility between different lock types

The compatibility rule applies to lock requests made from different processes, not to
multiple lock requests made by a single process. If a process has an existing lock on a
range of a file, a subsequent attempt to place a lock on the same range by the same
process will replace the existing lock with the new one. Thus, if a process has a write
lock on bytes 16-32 of a file and then tries to place a read lock on bytes 16-32, the
request will succeed (assuming that we’re not racing with any other processes trying to
lock the same portion of the file), and the write lock will be replaced by a read lock.

To obtain a read lock, the descriptor must be open for reading; to obtain a write
lock, the descriptor must be open for writing.

We can now describe the three commands for the fcntl function.

F_GETLK  Determine whether the lock described by flockptr is blocked by some other
lock. If a lock exists that would prevent ours from being created, the
information on that existing lock overwrites the information pointed to by
flockptr. If no lock exists that would prevent ours from being created, the
structure pointed to by flockptr is left unchanged except for the 1_type
member, which is set to F_UNLCK.

F_SETLK  Set the lock described by flockptr. 1f we are trying to obtain a read lock
(1_type of F_RDLCK) or a write lock (1_type of F_WRLCK) and the
compatibility rule prevents the system from giving us the lock
(Figure 14.3), fcntl returns immediately with errno set to either
EACCES or EAGAIN.

Although POSIX allows an implementation to return either error code, all four
implementations described in this text return EAGAIN if the locking request cannot
be satisfied.

This command is also used to clear the lock described by flockptr (1_type
of F_UNLCK).

F_SETLKW This command is a blocking version of F_SETLK. (The W in the command
name means wait) If the requested read lock or write lock cannot be
granted because another process currently has some part of the requested
region locked, the calling process is put to sleep. The process wakes up
cither when the lock becomes available or when interrupted by a signal.
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Be aware that testing for a lock with F_GETLK and then trying to obtain that lock
with F_SETLK or F *SETLKW is not an atomic operation. We have no guarantee that,
between the two fcnt1 calls, some other process won’t come in and obtain the same
lock. If we don’t want to block while waiting for a lock to become available to us, we
must handle the possible error returns from F_SETLK.

Note that POSIX.1 doesn’t specify what happens when one process read-locks a range of a file,
a second process blocks while trying to get a write lock on the same range, and a third
processes then attempts to get another read lock on the range. If the third process is allowed to
place a read lock on the range just because the range is already read-locked, then the
implementation might starve processes with pending write locks. This means that as
additional requests to read lock the same range arrive, the time that the process with the
pending write-lock request has to wait is extended. If the read-lock requests arrive quickly
enough without a Iull in the arrival rate, then the writer could wait for a long time.

When setting or releasing a lock on a file, the system combines or splits adjacent
areas as required. For example, if we lock bytes 100 through 199 and then unlock byte
150, the kernel still maintains the locks on bytes 100 through 149 and bytes 151 through
199. Figure 14.4 illustrates the byte-range locks in this situation.

T T T T
ysecond, |
. Viocked ¢ |
'*mge"f* |
g 1

e g
| [ i

100 149 151 199

File after unlocking byte 150

Figure 14.4 File byte-range lock diagram-

If we were to lock byte 150; the system would coalesce the adjacent locked regions
into a single region from byte 100 through 199. The resulting picture would be the first
diagram in Figure 14.4, the same as when we started.

Example—Requesting and Releasing a Lock

To save ourselves from having to allocate an £1ock structure and fill in all the elements
each time, the function 1ock_reg in Figure 14.5 handles all these details.
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#include "apue.h"
#include <fcntl.h>

int
lock reg(int fd, int cmd, int type, off t offset, int whence, off t len)
{

struct flock lock;

lock.l_type = type; /* F RDLCK, F_WRLCK, F_UNLCK */

lock.l start = offset; /* byte offset, relative to 1_whence */
lock.l whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.l _len = len; /* #bytes (0 means to EOF) */

return (fentl (£d, cmd, &lock));

Figure 14.5 Function to lock or unlock a region of a file

Since most locking calls are to lock or unlock a region (the command F_GETLK is rarely
used), we normally use one of the following five macros, which are defined in apue.h

(Appendix B).
#define read lock(fd, offset, whence, len) \

lock_reg((fd), F_SETLK, F_RDLCK, (offset), {(whence), (len))
#define readw lock (fd, offset, whence, len) \

lock_reg((fd), F_SETLKW, F_RDLCK, (offset), (whence), (len))
#define write lock(fd, offset, whence, len) \

lock_reg((fd), F_SETLK, F_WRLCK, (offset), (whence), (len))
#define writew lock(fd, offset, whence, len) \

lock_reg((fd), F_SETLKW, F_WRLCK, (offset), (whence), (len))
#define un_lock(fd, offset, whence, len) \ ‘

lock reg((fd), F_SETLK, F_UNLCK, (offset), (whence), (len))

We have purposely defined the first three arguments to these macros in the same order
as the 1seek function. =)

Example—Testing for a Lock

Figure 14.6 defines the function lock_test that we'll use to test for a lock.

#include "apue.h"
#include <fcntl.h>

pid_t
lock test(int fd, int type, off t offset, int whence, off t len)

{

struct flock lock;
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lock.1l_type = type; /* F_RDLCK or F_WRLCK */

lock.l start = offset; /* byte offset, relative to 1_whence */
lock.1l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.1l len = len; /* #bytes (0 means to EOF) */

if (fentl(fd, F_GETLK, &lock) < 0)
err_sys("fcntl error");

if (lock.l type == F_UNLCK)
return(0) ; /* false, region isn’t locked by another proc */
return(lock.l_pid); /* true, return pid of lock owner */

Figure 14.6 Function to test for a locking condition

If a Jock exists that would block the request specified by the arguments, this function
returns the process ID of the process holding the lock. Otherwise, the function returns 0
(false). We normally call this function from the following two macros (defined in
apue.h):

#define is_read_lockable(fd, offset, whence, len) \

(lock_test ((fd), F_RDLCK, (offset), (whence), (len)) == 0)
#define is_write lockable(fd, offset, whence, len) \
(lock_test ((fd), F_WRLCK, (offset), (whence), (len)) == 0)

Note that the lock_test function can’t be used by a process to see whether it is
currently holding a portion of a file locked. The definition of the F_GETLK command
states that the information returned applies to an existing lock that would prevent us
from creating our own lock. Since the F_SETLK and F_SETLKW commands always
replace a process’s existing lock if it exists, we can never block on our own lock; thus,
the F_GETLK command will never report our own lock. 0

Example—Deadlock

Deadlock occurs when two processes are each waiting for a resource that the other has
locked. The potential for deadlock exists if a process that controls a locked region is put
to sleep when it tries to lock another region that is controlled by a different process.

Figure 14.7 shows an example of deadlock. The child locks byte 0 and the parent
locks byte 1. Then each tries to lock the other’s already locked byte. We use the
parent—hild synchronization routines from Section 8.9 (TELL_xxx and WAT T_XxX) SO
that each process can wait for the other to obtain its lock. Running the program in
Figure 14.7 gives us

$ ./a.out

parent: got the lock, byte 1

child: got the lock, byte 0 .

child: writew_lock error: Resource deadlock avoided
parent: got the lock, byte 0
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#include "apue.h"
#include <fcntl.h>

static void
lockabyte (const char *name, int £d, off t offset)

{

if (writew_lock(fd, offset, SEEK_SET, 1) < 0)
err sys("%s: writew_lock error", name) ;

printf ("$s: got the lock, byte $1d\n", name, offset);

}

int

main (void)
{

int f£d;

pid_t pid;

/*

"s Create a file and write two bytes to it.

*/

if ((fd = creat ("templock", FILE MODE)) < 0)
err_sys("creat error");

if (write(fd, "ab", 2) != 2)
err_sys("write error");

TELL_WAIT ();

if ((pid = fork()) < 0) {
err sys("fork error") ;

} else if (pid == 0) { /* child */
lockabyte ("child", fd, 0);

TELL_PARENT (getppid () ;
WAIT_ PARENT() ;
lockabyte ("child", fd, 1);

} else { /* parent */
lockabyte ("parent", £d, 1);
TELL_CHILD(pid) ;

WAIT_CHILD() ;
lockabyte ("parent", fd, 0);
exit (0);
}

Figure 14.7 Example of deadlock detection

When a deadlock is detected, the kernel has to choose one process to receive the
error return. In this example, the child was chosen, but this is an implementation detail.
On some systems, the child always receives the error. On other systems, the parent
always gets the error. On some systems, you might even see the errors split between the
child and the parent as multiple lock attempts are made. o
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Implied Inheritance and Release of Locks

Three rules govern the automatic inheritance and release of record locks.

1.

Locks are associated with a process and a file. This has two implications. The first is
obvious: when a process terminates, all its locks are released. The second is far from
obvious: whenever a descriptor is closed, any locks on the file referenced by that
descriptor for that process are released. This means that if we do

fdl = open(pathname, ...);
read lock(fdl, ...);

fd2 = dup(fdi);

close (fd2) ;

after the close (£d2), the lock that was obtained on £d1 is released. The same
thing would happen if we replaced the dup with open, as in

fdl = open(pathname, ...);
read_lock (fd1l, ...);

fd2 = open(pathname, ...)
close (£d2);

to open the same tile on another descriptor.

Locks are never inherited by the child across a fork. This means that if a process
obtains a lock and then calls fork, the child is considered another process with
regard to the lock that was obtained by the parent. The child has to call fentl to
obtain its own locks on any descriptors that were inherited across the fork. This
makes sense because locks are meant to prevent multiple processes from writing to
the same file at the same time. If the child inherited locks across a £ ork, both the
parent and the child could write to the same file at the same time.

Locks are inherited by a new program across an exec. Note, however, that if the
close-on-exec flag is set for a file descriptor, all locks for the underlying file are
released when the descriptor is closed as part of an exec.

FreeBSD Implementation

Let’s take a brief look at the data structures used in the FreeBSD implementation. This
should help clarify rule 1, that locks are associated with a process and a file.

Consider a process that executes the following statements (ignoring error returns):

fdl = open(pathname, ...);

write lock(fdl, 0, SEEK SET, 1); /* parent write locks byte 0 */
if ((pid = fork()) > 0) { /* parent */

fd2 = dup(£dl);

fd3 = open(pathname, ...);

} else if (pid == 0) {
read_lock(fdl, 1, SEEK SET, 1); /* child read locks byte 1 */
}

pause () ;
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Figure 14.8 shows the resulting data structures after both the parent and the child have
paused.

parent process table entry

file table

file status flags

fd current file offset

file
flags  pointer

fd1: o R v-node pointer T
fd2: = —_— v-node table
> v-node
o information
| | S T inode
file status flags information

current file offset

linked list of locks

child process table entry wr_—

I

fd struct lockf struct lockf

fil
flags pofn%er

- link ——» link
fd1: L I
fd2: flags, etc. flags, etc.
fd3: starting offset starting offset
length length
process 1D process 1D

Figure 14.8 The FreeBSD data structures for record locking

We've shown the data structures that result from the open, fork, and dup earlier
(Figures 3.8 and 8.2). What is new are the lockf structures that are linked together
from the i-node structure. Note that each lockf structure describes one locked region
(defined by an offset and length) for a given process. We show two of these structures:
one for the parent’s call to write_lock and one for the child’s call to read_lock.
Each structure contains the corresponding process ID.

In the parent, closing any one of £d1, £d2, or £d3 causes the parent’s lock to be
released. When any one of these three file descriptors is closed, the kernel goes through
the linked list of locks for the corresponding i-node and releases the locks held by the
calling process. The kernel can't tell (and doesn’t care) which descriptor of the three
was used by the parent to obtain the lock.

Example

In the program in Figure 13.6, we saw how a daemon can use a lock on a file to ensure
that only one copy of the daemon is running. Figure 14.9 shows the implementation of
the Lock i 1e function used by the daemon to place a write lock ona file.
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#include <unistd.h>
#include <fcntl.h>

int
lockfile(int fd)

{

struct flock f1l;

f1.1_type = F_WRLCK;

fl.1_start = 0;

f1.1_whence = SEEK_SET;

fl1.1 len = 0;

return(fcntl (fd, F_SETLK, &fl));

Figure 14.9 Place a write lock on an entire file

Alternatively, we could define the 1ockfile function in terms of the write lock
function:

#define lockfile(fd) write_lock((fd), 0, SEEK SET, 0)

Locks at End of File

Use caution when locking or unlocking relative to the end of file. Most
implementations convert an 1_whence value of SEEK_CUR or SEEK_END into an
absolute file offset, using 1_start and the file’s current position or current length.
Often, however, we need to specify a lock relative to the file’s current position or current
length, because we can’t call 1seek to obtain the current file offset, since we don’t have
a lock on the file. (There’s a chance that another process could change the file’s length
between the call to 1seek and the lock call.)
Consider the following sequence of steps:

writew_lock(fd, 0, SEEK_END, 0);
write (fd, buf, 1);

un_lock (fd, 0, SEEK_END);
write(fd, buf, 1);

This sequence of code might not do what you expect. It obtains a write lock from the
current end of the file onward, covering any future data we might append to the file.
Assuming that we are at end of file when we perform the first write, that will extend
the file by one byte, and that byte will be locked. The unlock that follows has the effect
of removing the locks for future writes that append data to the file, but it leaves a lock
on the last byte in the file. When the second write occurs, the end of file is extended by
one byte, but this byte is not locked. The state of the file locks for this sequence of steps
is shown in Figure 14.10
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Figure 14.10 File range lock diagram

When a portion of a file is locked, the kernel converts the offset specified into an
absolute file offset. In addition to specifying an absolute file offset (SEEK_SET), fcntl
allows us to specify this offset relative to a point in the file: current (SEEK_CUR) or end
of file (SEEK_END). The kernel needs to remember the locks independent of the current
file offset or end of file, because the current offset and end of file can change, and
changes to these attributes shouldn’t affect the state of existing locks.

If we intended to remove the lock covering the byte we wrote in the first write, we
could have specified the length as —1. Negative-length values represent the bytes before
the specified offset.

Advisory versus Mandatory Locking

Consider a library of database access routines. If all the functions in the library handle
record locking in a consistent way, then we say that any set of processes using these
functions to access a database are cooperating processes. 1t is feasible for these database
access functions to use advisory locking if they are the only ones being used to access
the database. But advisory locking doesn’t prevent some other process that has write
permission for the database file from writing whatever it wants to the database file.
This rogue process would be an uncooperating process, since it's not using the accepted
method (the library of database functions) to access the database.

Mandatory locking causes the kernel to check every open, read, and write to
verify that the calling process isn't violating ‘a lock on the file being accessed.
Mandatory locking is sometimes called enforcement-mode locking.

We saw in Figure 14.2 that Linux 2.4.22 and Solaris 9 provide mandatory record locking, but
FreeBSD 5.2.1 and Mac OS X 10.3 do not. Mandatory record locking is not part of the Single

UNIX Specification. On Linux, if you want mandatory locking, you need to enable it on a per
file system basis by using the -o mand option to the mount command.
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Mandatory lockingis enabled for a particular file by turning on the set-group-ID bit
and turning off the group-execute bit. (Recall Figure 4.12.) Since the set-group-ID bit
makes no sense when the group-execute bit is off, the designers of SVR3 chose this way
to specify that the locking for a file is to be mandatory locking and not advisory locking.

What happens to a process that tries to read or write a file that has mandatory
locking enabled and the specified part of the file is currently read-locked or
write-locked by another process? The answer depends on the type of operation (read
or write), the type of lock held by the other process (read lock or write lock), and
whether the descriptor for the read or write is nonblocking. Figure 14.11 shows the

eight possibilities.
Type of existing Blocking descriptor, Nonblocking descriptor,
lock on region held tries to tries to
by other process read write read write
read lock OK blocks OK EAGAIN
write lock blocks blocks EAGAIN EAGAIN

Figure 14.11 Effect of mandatory locking on reads and writes by other processes

In addition to the read and write functions in Figure 14.11, the open function can
also be affected by mandatory record locks held by another process. Normally, open
succeeds, even if the file being opened has outstanding mandatory record locks. The
next read or write follows the rules listed in Figure 14.11. But if the file being opened
has outstanding mandatory record locks (either read locks or write locks), and if the
flags in the call to open specify either O TRUNC or O_CREAT, then open returns an error
of EAGAIN immediately, regardless of whether O_NONBLOCK is specified.

Only Solaris treats the O_CREAT flag as an error case. Linux allows the O_CREAT flag to be
specified when opening a file with an outstanding mandatory lock. Generating the open error
for O_TRUNC makes sense, because the file cannot be truncated if it is read-locked or
write-locked by another process. Generating the error for O_CREAT, however, makes little
sense; this flag says to create the file only if it doesn’t already exist, but it has to exist to be
record-locked by another process.

This handling of locking conflicts with open can lead to surprising results. While
developing the exercises in this section, a test program was run that opened a file
(whose mode specified mandatory locking), established a read lock on an entire file, and
then went to sleep for a while. (Recall from Figure 14.11 that a read lock should prevent
writing to the file by other processes.) During this sleep period, the following behavior
was seen in other typical UNIX System programs.

® The same file could be edited with the ed editor, and the results written back to
disk! The mandatory record locking had no effect at all. Using the system call
trace feature provided by some versions of the UNIX System, it was seen that ed
wrote the new contents to a temporary file, removed the original file, and then
renamed the temporary file to be the original file. The mandatory record locking
has no effect on the unlink function, which allowed this to happen.
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Under Solaris, the system call trace of a process is obtained by the trus s(1) command.
FreeBSD and Mac OS X use the ktrace(1) and kdump(1) commands. Linux provides the
strace(1) command for tracing the system calls made by a process.

e The vi editor was never able to edit the file. It could read the file’s contents, but
whenever we tried to write new data to the file, EAGAIN was returned. If we
tried to append new data to the file, the write blocked. This behavior from vi
is what we expect.

o Using the Korn shell’s > and >> operators to overwrite or append to the file
resulted in the error “cannot create.”

* Using the same two operators with the Bourne shell resulted in an error for >,
but the >> operator just blocked until the mandatory lock was removed, and
then proceeded. (The difference in the handling of the append operator is
because the Korn shell opens the file with O_CREAT and O_APPEND, and we
mentioned earlier that specifying O_CREAT generates an error. The Bourne
shell, however, doesn’t specify O_CREAT if the file already exists, so the open
succeeds but the next write blocks.)

Results will vary, depending on the version of the operating system you are using. The
bottom line with this exercise is to be wary of mandatory record locking. As seen with
the ed example, it can be circumvented.

Mandatory record locking can also be used by a malicious user to hold a read lock
on a file that is publicly readable. This can prevent anyone from writing to the file. (Of
course, the file has to have mandatory record locking enabled for this to occur, which
may require the user be able to change the permission bits of the file) Consider a
database file that is world readable and has mandatory record locking enabled. If a
malicious user were to hold a read lock on the entire file, the file could not be written to
by other processes.

Example

The program in Figure 14.12 determines whether mandatory locking is supported by a
system.

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>

int

main (int argc, char *argv(l)

{
int fd;
pid_t pid;
char buf [5];

struct stat statbuf;
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if (arge != 2) {
fprintf (stderr, "usage: %s filename\n", argvi{0]l);
exit (1) ;

if ((fd = open(argv[1l], O RDWR | O_CREAT | O_TRUNC, FILE MODE)) < 0)
err_sys("open error");

if (write(fd, "abcdef", 6) != 6)
err sys("write error");

/* turn on set-group-ID and turn off group-execute */

if (fstat (fd, &statbuf) < 0)
err_sys("fstat error");

if (fchmod(fd, (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
err_sys("fchmod error");

TELL_WAIT () ;

if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid > 0) { /* parent */
/* write lock entire file */
if (write_lock(fd, 0, SEEK SET, 0) < 0)
err_sys("write_ lock error");

TELL CHILD (pid) ;

if (waitpid(pid, NULL, 0) < 0)
err_sys("waitpid error");
} else { /* child */
WAIT PARENT() ; /* wait for parent to set lock */

set_fl(fd, O NONBLOCK) ;

/* first let’s see what error we get if region is locked */
if (read_lock(fd, 0, SEEK SET, 0) != -1) /* no wait */
err_sys("child: read lock succeeded");
printf ("read_lock of already-locked region returns %d\n",
errno) ;

/* now try to read the mandatory locked file */
if (lseek(fd, 0, SEEK SET) == -1)
err_sys("lseek error");
if (read(fd, buf, 2) < 0)
err_ret("read failed (mandatory locking works)");
else
printf ("read OK (no mandatory locking), buf = %2.2s\n",
buf) ;
}

exit (0);

Figure 14.12 Determine whether mandatory locking is supported
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This program creates a file and enables mandatory locking for the file.. The program
then splits into parent and child, with the parent obtaining a write lock on the entire file.
The child first sets its descriptor nonblocking and then attempts to obtain a read lock on
the file, expecting to get an error. This lets us see whether the system returns EACCES or
EAGAIN. Next, the child rewinds the file and tries to read from the file. If mandatory
locking is provided, the read should return EACCES or EAGAIN (since the descriptor is
nonblocking). Otherwise, the read returns the data that it read. Running this program
under Solaris 9 (which supports mandatory locking) gives us

$ ./a.out temp.lock
read_lock of already-locked region returns 11
read failed (mandatory locking works): Resource temporarily unavailable

If we look at either the system’s headers or the intro(2) manual page, we see that an
errno of 11 corresponds to EAGAIN. Under FreeBSD 5.2.1, we get

$ ./a.out temp.lock
read_lock of already-locked region returns 35
read OK (no mandatory locking), buf = ab

Here, an errno of 35 corresponds to EAGAIN. Mandatory locking is not supported. O
Example

Let’s return to the first question of this section: what happens when two people edit the
same file at the same time? The normal UNIX System text editors do not use record
locking, so the answer is still that the final result of the file corresponds to the last
process that wrote the file.

Some versions of the vi editor use advisory record locking. Even if we were using
one of these versions of vi, it still doesn’t prevent users from running another editor
that doesn’t use advisory record locking.

If the system provides mandatory record locking, we could modify our favorite
editor to use it (if we have the sources). Not having the source code to the editor, we
might try the following. We write our own program that is a front end to vi. This
program immediately calls fork, and the parent just waits for the child to complete.
The child opens the file specified on the command line, enables mandatory locking,
obtains a write lock on the entire file, and then executes vi. While vi is running, the
file is write-locked, so other users can’t modify it. When vi terminates, the parent’s
wait returns, and our front end terminates.

A small front-end program of this type can be written, but it doesn’t work. The
problem is that it is common for most editors to read their input file and then close it. A
lock is released on a file whenever a descriptor that references that file is closed. This
means that when the editor closes the file after reading its contents, the lock is gone.
There is no way to prevent this in the front-end program. o

We'll use record locking in Chapter 20 in our database library to provide concurrent
access to multiple processes. We'll also provide some timing measurements to see what
effect record locking has on a process.
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14.4 STREAMS

The STREAMS mechanism is provided by System V as a general way to interface
communication drivers into the kernel. We need to discuss STREAMS to understand
the terminal interface in System V, the use of the poll function for I/O multiplexing
(Section 14.5.2), and the implementation of STREAMS-based pipes and named pipes
(Sections 17.2 and 17.2.1).

Be careful not to confuse this usage of the word stream with our previous usage of it in the
standard 1/0O library (Section 5.2). The streams mechanism was developed by Dennis Ritchie
[Ritchie 1984] as a way of cleaning up the traditional character I/0O system (c-lists) and to
accommodate networking protocols. The streams mechanism was later added to SVR3, after
enhancing it a bit and capitalizing the name. Complete support for STREAMS (ie., a
STREAMS-based terminal I/O system) was provided with SVR4. The SVR4 implementation is
described in [AT&T 1990d]. Rago [1993] discusses both user-level STREAMS programming
and kernel-level STREAMS programming.

STREAMS is an optional feature in the Single UNIX Specification (included as the XSI
STREAMS Option Group). Of the four platforms discussed in this text, only Solaris provides
native support for STREAMS. A STREAMS subsystem is available for Linux, but you need to
add it yourself. It is not usually included by default.

A stream provides a full-duplex path between a user process and a device driver.
There is no need for a stream to talk to a hardware device; a stream can also be used
with a pseudo-device driver. Figure 14.13 shows the basic picture for what is called a
simple stream.

user process

stream head
(system call
interface)

kernel

device driver
(or pseudo-device
driver)

Figure 14.13 A simple stream

Beneath the stream head, we can push processing modules onto the stream. This is
done using an ioctl command. Figure 14.14 shows a stream with a single processing
module. We also show the connection between these boxes with two arrows to stress
the full-duplex nature of streams and to emphasize that the processing in one direction
is separate from the processing in the other direction.
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Figure 14.14 A stream with a processing module

Any number of processing modules can be pushed onto a stream. We use the term
push, because each new module goes beneath the stream head, pushing any previously
pushed modules down. (This is similar to a last-in, first-out stack.) In Figure 14.14, we
have labeled the downstream and upstream sides of the stream. Data that we write to a
stream head is sent downstream. Data read by the device driver is sent upstream.

STREAMS modules are similar to device drivers in that they execute as part of the
kernel, and they are normally link edited into the kernel when the kernel is built. If the
system supports dynamically-loadable kernel modules (as do Linux and Solaris), then
we can take a STREAMS module that has not been link edited into the kernel and try to
push it onto a stream; however, there is no guarantee that arbitrary combinations of
modules and drivers will work properly together.

We access a stream with the functions from Chapter 3: open, close, read, write,
and ioctl. Additionally, three new functions were added to the SVR3 kernel to
support STREAMS (getmsg, putmsg, and poll), and another two (getpmsg and
putpmsg) were added with SVR4 to handle messages with different priority bands
within a stream. We describe these five new functions later in this section.

The pathname that we open for a stream normally lives beneath the /dev directory.
Simply looking at the device name using 1ls -1, we can’t tell whether the device is a
STREAMS device. All STREAMS devices are character special files.

Although some STREAMS documentation implies that we can write processing
modules and push them willy-nilly onto a stream, the writing of these modules requires
the same skills and care as writing a device driver. -Generally, only specialized
applications or functions push and pop STREAMS modules.

Before STREAMS, terminals were handled with the existing c-list mechanism. (Section 10.3.1
of Bach [1986] and Section 10.6 of McKusick et al. [1996] describe c-lists in SVR2 and 4.4BSD,
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respectively.) Adding other character-based devices to the kernel usually involved writing a
device driver and putting everything into the driver. Access to the new device was typically
through the raw device, meaning that every user read or write ended up directly in the
device driver. The STREAMS mechanism cleans up this way of interacting, allowing the data
to flow between the stream head and the driver in STREAMS messages and allowing any
number of intermediate processing modules to operate on the data.

STREAMS Messages

All input and output under STREAMS is based on messages. The stream head and the
user process exchange messages using read, write, ioctl, getmsg, getpmsg,
putmsg, and putpmsg. Messages are also passed up and down a stream between the
stream head, the processing modules, and the device driver.

Between the user process and the stream head, a message consists of a message
type, optional control information, and optional data. We show in Figure 14.15 how the
various message types are generated by the arguments to write, putmsg, and
putpmsg. The control information and data are specified by strbuf structures:

struct strbuf

int maxlen; /* size of buffer */
int len; /* number of bytes currently in buffer */
char *buf; /* pointer to buffer */

}i

When we send a message with putmsg or putpmsg, len specifies the number of bytes
of data in the buffer. When we receive a message with getmsg or getpmsg, maxlen
specifies the size of the buffer (so the kernel won’t overflow the buffer), and len is set
by the kernel to the amount of data stored in the buffer. We'll see that a zero-length
message is OK and that a 1en of -1 can specify that there is no control or data.

Why do we need to pass both control information and data? Providing both allows
us to implement service interfaces between a user process and a stream. Olander,
McGrath, and Israel [1986] describe the original implementation of service interfaces in
System V. Chapter 5 of AT&T [1990d] describes service interfaces in detail, along with a
simple example. Probably the best-known service interface, described in Chapter 4 of
Rago [1993], is the System V Transport Layer Interface (TLI), which provides an
interface to the networking system.

Another example of control information is sending a connectionless network
message (a datagram). To send the message, we need to specify the contents of the
message (the data) and the destination address for the message (the control
information). If we couldn’t send control and data together, some ad hoc scheme would
be required. For example, we could specify the address using an ioct1, followed by a
write of the data. Another technique would be to require that the address occupy the
first N bytes of the data that is written using write. Separating the control information
from the data, and providing functions that handle both (putmsg and getmsg) is a
cleaner way to handle this.

There are about 25 different types of messages, but only a few of these are used
between the user process and the stream head. The rest are passed up and down a
stream within the kernel. (These message types are of interest to people writing
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STREAMS processing modules, but can safely be ignored by people writing user-level
code.) We'll encounter only three of these message types with the functions we use
(read, write, getmsg, getpmsg, putmsg, and putpmsg):

e M DATA (user data for 1/0O)
¢ M_PROTO (protocol control information)
e M_PCPROTO (high-priority protocol control information)

Every message on a stream has a queueing priority:

¢ High-priority messages (highest priority)
* Priority band messages
* Ordinary messages (lowest priority)

Ordinary messages are simply priority band messages with a band of 0. Priority band
messages have a band of 1-255, with a higher band specifying a higher priority.
High-priority messages are special in that only one is queued by the stream head at a
time. Additional high-priority messages are discarded when one is already on the
stream head’s read queue.

Each STREAMS module has two input queues. One receives messages from the
module above (messages moving downstream from the stream head toward the driver),
and one receives messages from the module below (messages moving upstream from
the driver toward the stream head). The messages on an input queue are arranged by
priority. We show in Figure 14.15 how the arguments to write, putmsg, and putpmsg
cause these various priority messages to be generated.

There are other types of messages that we don’t consider. For example, if the
stream head receives an M_SIG message from below, it generates a signal. This is how a
terminal line discipline module sends the terminal-generated signals to the foreground
process group associated with a controlling terminal.

putmsg and putpmsg Functions

A STREAMS message (control information or data, or both) is written to a stream using
either putmsg or putpmsg. The difference in these two functions is that the latter
allows us to specify a priority band for the message.

#include <stropts.h>

int putmsg(int filedes, const struct strbuf «ctlptr,
const struct strbuf *dataptr, int flag);

int putpmsg(int filedes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flag);

Both return: 0 if OK, -1 on error

We can also write to a stream, which is equivalent to a putmsg without any control
information and with a flag of 0.
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These two functions can generate the three different priorities of messages:
ordinary, priority band, and high priority. Figure 14.15 details the combinations of the
arguments to these two functions that generate the various types of messages.

Function | Control? Data? band flag Message type generated
write N/A yes N/A N/A M_DATA (ordinary)
putmsg no no N/A 0 no message sent, returns 0
putmsg no yes N/A 0 M_DATA (ordinary)
putmsg yes yes or no N/A 0 M_PROTO (ordinary)
putmsg yes yes or no N/A RS_HIPRI | M_PCPROTO (high-priority)
putmsg no yes or no N/A RS_HIPRI | error, EINVAL

putpmsg | yesorno | yesor no 0-255 0 error, EINVAL

putpmsg no no 0-255 MSG_BAND no message sent, returns 0
putpmsg no yes 0 MSG_BAND M_DATA (ordinary)
putpmsg no yes 1-255 MSG_BAND | M_DATA (priority band)
putpmsg yes yes or no 0 MSG_BAND M_PROTO (ordinary)
putpmsg yes yes or no 1-255 MSG_BAND M_PROTO (priority band)
putpmsg yes yes or no 0 MSG_HIPRI | M_PCPROTO (high-priority)
putpmsg no yes or no 0 MSG_HIPRI | error, EINVAL

putpmsg | yesorno | yesorno | nonzero | MSG_HIPRI | error, EINVAL

Figure 14.15 Type of STREAMS message generated for write, putmsg, and putpmsg

The notation “N/A"” means not applicable. In this figure, a “no” for the control portion
of the message corresponds to either a null ctlptr argument or ctiptr—>len being ~1. A
“yes” for the control portion corresponds to ctlptr being non-null and ctlptr—>len being
greater than or equal to 0. The data portion of the message is handled equivalently
(using dataptr instead of ctiptr).

STREAMS ioctl Operations

In Section 3.15, we said that the ioct1 function is the catchall for anything that can’t be
done with the other I/O functions. The STREAMS system continues this tradition.

Between Linux and Solaris, there are almost 40 different operations that can be
performed on a stream using ioctl. Most of these operations are documented in the
streamio(7) manual page. The header <stropts.h> must be included in C code that
uses any of these operations. The second argument for ioctl, request, specifies which
of the operations to perform. All the requests begin with I_. The third argument
depends on the request. Sometimes, the third argument is an integer value; sometimes,
it’s a pointer to an integer or a structure.

Example—isastream Function

We sometimes need to determine if a descriptor refers to a stream or not. This is similar
to calling the isatty function to determine if a descriptor refers to a terminal device
(Section 18.9). Linux and Solaris provide the isastream function.
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#include <stropts.h>
int isastream(int filedes) ;

Returns: 1 (true) if STREAMS device, 0 (false) otherwise

Like isatty, this is usually a trivial function that merely tries an ioctl that is
valid only on a STREAMS device. Figure 14.16 shows one possible implementation of
this function. We use the I_CANPUT ioctl command, which checks if the band
specified by the third argument (0 in the example) is writable. If the ioctl succeeds,
the stream is not changed.

#include <stropts.h>
#include <unistd.h>
int
isastream(int fd)
{
return (ioctl (fd, I_CANPUT, 0) != -1);

}

Figure 14.16 Check if descriptor is a STREAMS device

We can use the program in Figure 14.17 to test this function.

#include "apue.h"
#include <fcntl.h>

int
main(int argc, char *argvl(])
{
int i, fd;
for (1 = 1; i < argc; i++) |

if ((fd = open(argv[il, O_RDONLY)) < 0) {
err _ret("%s: can’t open", argv[il);
continue;

}

if (isastream(fd) == 0)

err ret("%s: not a stream”, argv([il]);
else

err_msg("%$s: streams device", argv(il};

exit (0);

Figure 14.17 Test the isastream function



466 Advanced 1/0 Chapter 14

Running this program on Solaris 9 shows the various errors returned by the ioctl
function:

$ ./a.out /dev/tty /dev/fb /dev/null /etc/motd

/dev/tty: streams device

/dev/fb: not a stream: Invalid argument

/dev/null: not a stream: No such device or address
/etc/motd: not a stream: Inappropriate ioctl for device

Note that /dev/tty is a STREAMS device, as we expect under Solaris. The character
special file /dev/£b is not a STREAMS device, but it supports other ioct1 requests.
These devices return EINVAL when the ioctl request is unknown. The character
special file /dev/null does not support any ioct1 operations, so the error ENODEV is
returned. Finally, /etc/motd is a regular file, not a character special file, so the classic
error ENOTTY is returned. We never receive the error we might expect: ENOSTR
(“Device is not a stream”’).

The message for ENOTTY used to be “Not a typewriter,” a historical artifact because the UNIX
kernel returns ENOTTY whenever an ioct1 is attempted on a descriptor that doesn't refer to a
character special device. This message has been updated on Solaris to “Inappropriate ioctl for

device.”
O

Example

If the ioct1 request is I_LIST, the system returns the names of all the modules on the
stream—the ones that have been pushed onto the stream, including the topmost driver.
(We say topmost because in the case of a multiplexing driver, there may be more than
one driver. Chapter 12 of Rago [1993] discusses multiplexing drivers in detail.) The
third argument must be a pointer to a str_1ist structure:

struct str_list {
int sl_nmods; /* number of entries in array */
struct str_mlist *sl modlist; /* ptr to first element of array */

}i
We have to set s1_modlist to point to the first element of an array of str mlist
structures and set s1_nmods to the number of entries in the array:

struct str_mlist {
char 1 name[FMNAMESZ+1]; /* null terminated module name */

}i
The constant FMNAMESZ is defined in the header <sys/conf .h> and is often 8. The
extra byte in 1_name is for the terminating null byte.

If the third argument to the ioct1l is 0, the count of the number of modules is
returned (as the value of ioctl) instead of the module names. We'll use this to
determine the number of modules and then allocate the required number of
str_mlist structures.

Figure 14.18 illustrates the I_LIST operation. Since the returned list of names
doesn’t differentiate between the modules and the driver, when we print the module
names, we know that the final entry in the list is the driver at the bottom of the stream.
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#include "apue.h"
#include <fcntl.h>
#include <stropts.h>
#include <sys/conf.h>

int

main{int argc, char *argvl(])

{

int fd, i, nmods;
struct str_ list list;

if (argc != 2}
err_quit("usage: %s <pathname>", argv{0]);

if ((fd = openf(argv[l], O RDONLY)) < 0)
err_sys("can’'t open %s", argv[l]);

if (isastream{fd) == 0)
err _qguit("%$s is not a stream", argv[i]);

/*
* Fetch number of modules.
*/
if ((nmods = ioctl(fd, I_LIST, (void *) 0)) < 0)
err_sys("I_LIST error for nmods");
printf ("#modules = %d\n", nmods);

/*
* Allocate storage for all the module names.
*/
list.sl modlist = calloc(nmods, sizeof (struct str_mlist));
if (list.sl _modlist == NULL)
err_sys("calloc error") ;
list.sl_nmods = nmods;

/*
* Fetch the module names.
*/
if (ioctl(fd, I_LIST, &list) < 0)
err_sys("I_LIST error for list");

/*
* Print the names.
*/
for (i = 1; i <= nmods; i++)
printf (" %s: %s\n", (i == nmods) ? "driver" : "module",
list.sl _modlist++->1_name) ;

exit (0);

Figure 14.18 List the names of the modules on a stream
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If we run the program in Figure 14.18 from both a network login and a console
login, to see which STREAMS modules are pushed onto the controlling terminal, we get
the following;:

$ who
sar console May 1 18:27
sar pts/7 Jul 12 06:53

$ ./a.out /dev/console
#modules = 5
module: redirmod
module: ttcompat
module: ldterm
module: ptem
driver: pts
$ ./a.out /dev/pts/7
#modules = 4
module: ttcompat
module: ldterm
module: ptem
driver: pts

. The modules are the same in both cases, except that the console has an extra module on
top that helps with virtual console redirection. On this computer, a windowing system
was running on the console, so /dev/console actually refers to a pseudo terminal
instead of to a hardwired device. We'll return to the pseudo terminal case in
Chapter 19. 0

write to STREAMS Devices

In Figure 14.15 we said that a write to a STREAMS device generates an M_DATA
message. Although this is generally true, there are some additional details to consider.
First, with a stream, the topmost processing module specifies the minimum and
maximum packet sizes that can be sent downstream. (We are unable to query the
module for these values.) If we write more than the maximum, the stream head
normally breaks the data into packets of the maximum size, with one final packet that
can be smaller than the maximum.

The next thing to consider is what happens if we write zero bytes to a stream.
Unless the stream refers to a pipe or FIFO, a zero-length message is sent downstream.
With a pipe or FIFO, the default is to ignore the zero-length write, for compatibility
with previous versions. We can change this default for pipes and FIFOs using an
ioctl to set the write mode for the stream.

Write Mode

Two ioctl commands fetch and set the write mode for a stream. Setting request to
I_GWROPT requires that the third argument be a pointer to an integer, and the current
write mode for the stream is returned in that integer. If request is I _SWROPT, the third
argument is an integer whose value becomes the new write mode for the stream. As
with the file descriptor flags and the file status flags (Section 3.14), we should always
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fetch the current write mode value and modify it rather than set the write mode to some
absolute value (possibly turning off some other bits that were enabled).
Currently, only two write mode values are defined.

SNDZERO A zero-length write to a pipe or FIFO will cause a zero-length
message to be sent downstream. By default, this zero-length write
sends no message.

SNDPIPE Causes SIGPIPE to be sent to the calling process that calls either write
or putmsg after an error has occurred on a stream.

A stream also has a read mode, and we'll look at it after describing the getmsg and
getpmsg functions.

getmsg and getpmsg Functions

STREAMS messages are read from a stream head using read, getmsg, or getpmsg.

#include <stropts.h>

int getmsg (int filedes, struct strbuf *restrict ctiptr,
struct strbuf *restrict dataptr, int *restrict flagptr) ;

int getpmsg (int filedes, struct strbuf *restrict ctiptr,
struct strbuf *restrict dataptr, int *restrict bandptr,
int *restrict flagptr);

Both return: non-negative value if OK, -1 on error J

Note that flagptr and bandptr are pointers to integers. The integer pointed to by these
two pointers must be set before the call to specify the type of message desired, and the
integer is also set on return to the type of message that was read.

If the integer pointed to by flagptr is 0, getmsg returns the next message on the
stream head’s read queue. If the next message is a high-priority message, the integer
pointed to by flagptr is set to RS_HIPRI on return. If we want to receive only
high-priority messages, we must set the integer pointed to by flagptr to RS_HIPRI
before calling getmsg.

A different set of constants is used by getpmsg. We can set the integer pointed to
by flagptr to MSG_HIPRI to receive only high-priority messages. We can set the integer
to MSG_BAND and then set the integer pointed to by bandptr to a nonzero priority value
to receive only messages from that band, or higher (including high-priority messages).
If we only want to receive the first available message, we can set the integer pointed to
by flagptr to MSG_ANY; on return, the integer will be overwritten with either MSG_HIPRI
or MSG_BAND, depending on the type of message received. If the message we retrieved
was not a high-priority message, the integer pointed to by bandptr will contain the
message’s priority band.

If ctiptr is null or ctlptr—>maxlen is -1, the control portion of the message will remain
on the stream head’s read queue, and we will not process it. Similarly, if dataptr is null
or dataptr—>maxlen is —1, the data portion of the message is not processed and remains
on the stream head’s read queue. Otherwise, we will retrieve as much control and data
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portions of the message as our buffers will hold, and any remainder will be left on the
head of the queue for the next call.

If the call to getmsg or getpmsg retrieves a message, the return value is 0. If part
of the control portion of the message is left on the stream head read queue, the constant
MORECTL is returned. Similarly, if part of the data portion of the message is left on the
queue, the constant MOREDATA is returned. If both control and data are left, the return
value is (MORECTL | MOREDATA).

Read Mode

We also need to consider what happens if we read from a STREAMS device. There are
two potential problems.

1. What happens to the record boundaries associated with the messages on a
stream?

2. What happens if we call read and the next message on the stream has control
information?

The default handling for condition 1 is called byte-stream mode. In this mode, a read
takes data from the stream until the requested number of bytes has been read or until
there is no more data. The message boundaries associated with the STREAMS
messages are ignored in this mode. The default handling for condition 2 causes the
read to return an error if there is a control message at the front of the queue. We can
change either of these defaults.

Using ioctl, if we set request to I_GRDOPT, the third argument is a pointer to an
integer, and the current read mode for the stream is returned in that integer. A request of
I_SRDOPT takes the integer value of the third argument and sets the read mode to that
value. The read mode is specified by one of the following three constants:

RNORM Normal, byte-stream mode (the default), as described previously.

RMSGN Message-nondiscard mode. A read takes data from a stream until
the requested number of bytes have been read or until a message
boundary is encountered. If the read uses a partial message, the rest
of the data in the message is left on the stream for a subsequent
read.

RMSGD Message-discard mode. This is like the nondiscard mode, but if a
partial message is used, the remainder of the message is discarded.

Three additional constants can be specified in the read mode to set the behavior of
read when it encounters messages containing protocol control information on a stream:

RPROTNORM  Protocol-normal mode: read returns an error of EBADMSG. This is
the default.

RPROTDAT  Protocol-data mode: read returns the control portion as data.

RPROTDIS Protocol-discard mode: read discards the control information but
returns any data in the message.
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Only one of the message read modes and one of the protocol read modes can be set at a
time. The default read mode is (RNORM | RPROTNORM).

Example

The program in Figure 14.19 is the same as the one in Figure 3.4, but recoded to use
getmsg instead of read.

#include "apue.h"
#include <stropts.h>

#define BUFFSIZE 4096

int

main (void)

{
int n, flag;
char ctlbuf [BUFFSIZE], datbuf [BUFFSIZE];
struct strbuf ctl, dat;

ctl.buf = ctlbuf;
ctl.maxlen = BUFFSIZE;
dat .buf = datbuf;
dat .maxlen = BUFFSIZE;
for ( ; ;) |
flag = 0; /* return any message */
if ((n = getmsg(STDIN_FILENO, &ctl, &dat, &flag)) < 0)
err_sys("getmsg error");

fprintf (stderr, "flag = %d, ctl.len = 3d, dat.len = %d\n",
flag, ctl.len, dat.len);
if (dat.len == 0)
exit (0);
else if (dat.len > 0)
if (write(STDOUT FILENO, dat.buf, dat.len) != dat.len)

err_sys("write error");

Figure 14.19 Copy standard input to standard output using getmsg

If we run this program under Solaris, where both pipes and terminals are implemented
using STREAMS, we get the following output:

$ echo hello, world | ./a.out requires STREAMS-based pipes
flag = 0, ctl.len = -1, dat.len = 13

hello, world

flag = 0, ctl.len = 0, dat.len = 0 indicates a STREAMS hangup

.$ ./a.out requires STREAMS-based terminals
this is line 1
flag = 0, ctl.len

-1, dat.len = 15
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this is line 1
and line 2
flag = 0, ctl.len = -1, dat.len = 11
and line 2
“D type the terminal EOF character
flag = 0, ctl.len = -1, dat.len = 0 tty end of file is not the same as a hangup
S ./a.out < /etc/motd
getmsg error: Not a stream device
When the pipe is closed (when echo terminates), it appears to the program in
Figure 14.19 as a STREAMS hangup, with both the control length and the data length
set to 0. (We discuss pipes in Section 15.2.) With a terminal, however, typing the
end-of-file character causes only the data length to be returned as 0. This terminal end
of file is not the same as a STREAMS hangup. As expected, when we redirect standard
input to be a non-STREAMS device, getmsg returns an error. 0
14.5 /O Multiplexing

When we read from one descriptor and write to another, we can use blocking 1/0 in a
loop, such as

while ((n = read(STDIN_FILENO, buf, BUFSIZ)) > 0)
if (write(STDOUT_FILENO, buf, n) != n)
err sys("write error");

We see this form of blocking I/O over and over again. What if we have to read from
two descriptors? In this case, we can’t do a blocking read on either descriptor, as data
may appear on one descriptor while we’re blocked in a read on the other. A different
technique is required to handle this case.

Let’s look at the structure of the telnet(1) command. In this program, we read
from the terminal (standard input) and write to a network connection, and we read
from the network connection and write to the terminal (standard output). At the other
end of the network connection, the telnetd daemon reads what we typed and
presents it to a shell as if we were logged in to the remote machine. The telnetd
daemon sends any output generated by the commands we type back to us through the
telnet command, to be displayed on our terminal. Figure 14.20 shows a picture of
this.

.
Ger a3~y telnet s Felnet
terminal . command | ~_daemon

Figure 14.20 Overview of telnet program

The telnet process has two inputs and two outputs. We can’t do a blocking read
on either of the inputs, as we never know which input will have data for us.
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One way to handle this particular problem is to divide the process in two pieces
(using fork), with each half handling one direction of data. We show this in
Figure 14.21. (The cu(l) command provided with System V’s uucp communication
package was structured like this.)

telnet command
| lgarent) \

user ata / telnet
terminal daemon
telnet command
(child)

Figure 14.21 The telnet program using two processes

If we use two processes, we can let each process de a blocking read. But this leads to a
problem when the operation terminates. If an end of file is received by the child (the
network connection is disconnected by the telnetd daemon), then the child
terminates, and the parent is notified by the SIGCHLD signal. But if the parent
terminates (the user enters an end of file at the terminal), then the parent has to tell the
child to stop. We can use a signal for this (SIGUSR1, for example), but it does
complicate the program somewhat.

Instead of two processes, we could use two threads in a single process. This avoids
the termination complexity, but requires that we deal with synchronization between the
threads, which could add more complexity than it saves.

We could use nonblocking 1/0 in a single process by setting both descriptors
nonblocking and issuing a read on the first descriptor. If data is present, we read it and
process it. If there is no data to read, the call returns immediately. We then do the same
thing with the second descriptor. After this, we wait for some amount of time (a few
seconds, perhaps) and then try to read from the first descriptor again. This type of loop
is called polling. The problem is that it wastes CPU time. Most of the time, there won't
be data to read, so we waste time performing the read system calls. We also have to
guess how long to wait each time around the loop. Although it works on any system
that supports nonblocking 1/0, polling should be avoided on a multitasking system.

Another technique is called asynchronous 1/0. To do this, we tell the kernel to notify
us with a signal when a descriptor is ready for I/O. There are two problems with this.
First, not all systems support this feature (it is an optional facility in the Single UNIX
Specification). System V provides the SIGPOLL signal for this technique, but this signal
works only if the descriptor refers to a STREAMS device. BSD has a similar signal,
SIGIO, but it has similar limitations: it works only on descriptors that refer to terminal
devices or networks. The second problem with this technique is that there is only one of
these signals per process (SIGPOLL or SIGIO0). If we enable this signal for two
descriptors (in the example we've been talking about, reading from two descriptors),
the occurrence of the signal doesn’t tell us which descriptor is ready. To determine
which descriptor is ready, we still need to set each nonblocking and try them in
sequence. We describe asynchronous 1/O briefly in Section 14.6.
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A Dbetter technique is to use I/O multiplexing. To do this, we build a list of the
descriptors that we are interested in (usually more than one descriptor) and call a
function that doesn’t return until one of the descriptors is ready for I/O. On return
from the function, we are told which descriptors are ready for I/O.

Three functions—poll, pselect, and select—allow us to perform I/0
multiplexing. Figure 14.22 summarizes which platforms support them. Note that
select is defined by the base POSIX.1 standard, but pol1l is an XSI extension to the

base.
System poll | pselect | select | <sys/select.h>7
SUS XSI . ] .
FreeBSD 5.2.1 . . .
Linux 2.4.22 . . . .
Mac OS X 10.3 . . .
LSolaris 9 . . .

Figure 14.22 1/O multiplexing supported by various UNIX systems

POSIX specifies that <sys/select > be included to pull the information for select into your
program. Historically, however, we have had to include three other header files, and some of
the implementations haven't yet caught up to the standard. Check the select manual page
to see what your system supports. Older systems require that you include <sys/types.h>,
<sys/time.h>, and <unistd.h>.

/O multiplexing was provided with the select function in 4.2BSD. This function has
always worked with any descriptor, although its main use has been for terminal I /O and
network I/0. SVR3 added the poll function when the STREAMS mechanism was added.
Initially, however, pol1-worked only with STREAMS devices. In SVR4, support was added to
allow pol1l to work ori any descriptor.

14.5.1 select and pselect Functions

The select function lets us do I/O multiplexing under all POSIX-compatible
platforms. The arguments we pass to select tell the kernel
* Which descriptors we're interested in.

* What conditions we're interested in for each descriptor. (Do we want to read
from a given descriptor? Do we want to write to a given descriptor? Are we
interested in an exception condition for a given descriptor?)

* How long we want to wait. (We can wait forever, wait a fixed amount of time,
or not wait at all.)
On the return from select, the kernel tells us

* The total count of the number of descriptors that are ready

e Which descriptors are ready for each of the three conditions (read, write, or
exception condition)
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With this return information, we can call the appropriate I/O function (usually read or
write) and know that the function won’t block.

#include <sys/select.h>

int seléct (int maxfdpl, f£d_set *restrict readfds,
fd set *restrict writefds, £d_set *restrict exceptfds,
struct timeval *restrict foptr);

Returns: count of ready descriptors, 0 on timeout, -1 on error

Let’s look at the last argument first. This specifies how long we want to wait:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

Vi
There are three conditions.
tuptr == NULL

Wait forever. This infinite wait can be interrupted if we catch a signal. Return
is made when one of the specified descriptors is ready or when a signal is
caught. If a signal is caught, select returns -1 with errno set to EINTR.

toptr—>tv_sec == 0 && toptr—>tv_usec == 0

Don’t wait at all. All the specified descriptors are tested, and return is made
immediately. This is a way to poll the system to find out the status of multiple
descriptors, without blocking in the select function.

toptr—>tv_sec 1= 0 || toptr->tv_usec =0

Wait the specified number of seconds and microseconds. Return is made. when
one of the specified descriptors is ready or when the timeout value expires. If
the timeout expires before any of the descriptors is ready, the return value is 0.
(If the system doesn’t provide microsecond resolution, the tvptr->tv_usec value
is rounded up to the nearest supported value.) As with the first condition, this
wait can also be interrupted by a caught signal.

POSIX.1 allows an implementation to modify the timeval structure, so after select retumns,
you can’t rely on the structure containing the same values it did before calling select.
FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9 all leave the structure unchanged, but Linux 2.4.22
will update it with the time remaining if select returns before the timeout value expires.

The middle three arguments—readfds, writefds, and exceptfds—are pointers to
descriptor sets. These three sets specify which descriptors we’re interested in and for
which conditions (readable, writable, or an exception condition). A descriptor set is
stored in an fd_set data type. This data type is chosen by the implementation so that
it can hold one bit for each possible descriptor. We can consider it to be just a big array
of bits, as shown in Figure 14.23.



476

Advanced 1/0 Chapter 14

fdo fd1 fd2

readfds — | © 0 0

le——— one bit per possible descriptor ——m»

writefds ——m= 0 0 0

l«——  fd_set datatype ——

exceptfds -—m= | 0 0 0

Figure 14.23 Specifying the read, write, and exception descriptors for select

The only thing we can do with the £d_set data type is allocate a variable of this
type, assign a variable of this type to another variable of the same type, or use one of the
following four functions on a variable of this type.

#include <sys/select.h>
int FD_ISSET(int fd, fd_set *fdset) ;

Returns: nonzero if fd is in set, 0 otherwise
void FD_CLR(int fd, fd_set *fdset);

void FD_SET(int fd, f£d_set *fdset);
void FD_ZERO (fd_set *fdset) ;

These interfaces can be implemented as either macros or functions. An fd_set is
set to all zero bits by calling FD_ZERO. To turn on a single bit in a set, we use FD_SET.
We can clear a single bit by calling FD_CLR. Finally, we can test whether a given bit is
turned on in the set with FD_ISSET.

After declaring a descriptor set, we must zero the set using FD_ZERO. We then set
bits in the set for each descriptor that we’re interested in, as in

fd_set rset;
int fd;

FD_ZERO (&rset) ;
FD_SET (fd, &rset);
FD_SET (STDIN FILENO, &rset);

On return from select, we can test whether a given bit in the set is still on using
FD ISSET:

if (FD_ISSET(fd, &rset)) {

}



